Sequences

Definition: A set is a collection of objects, each appearing at most once, and order matters.

Example: \(\{1, 2, 3, 4\} \)

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)

Function:
- \(f: A \to B \) is a function if for all \(a \in A \), there is a unique \(b \in B \) such that \(f(a) = b \).

Sequences:
- \((1, 2, 3, 4) \) is a sequence of length 4.
- \((1, 2, 3) \) is a subsequence of \((1, 2, 3, 4) \).

Diagonal Subsequence:
- \((1, 2, 3) \) is a subsequence of \((1, 2, 3, 4) \).
- \((1, 2) \) is a subsequence of \((1, 2, 3, 4) \).

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)

Function:
- \(f: A \to B \) is a function if for all \(a \in A \), there is a unique \(b \in B \) such that \(f(a) = b \).

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)

Function:
- \(f: A \to B \) is a function if for all \(a \in A \), there is a unique \(b \in B \) such that \(f(a) = b \).

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)

Function:
- \(f: A \to B \) is a function if for all \(a \in A \), there is a unique \(b \in B \) such that \(f(a) = b \).

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)

Function:
- \(f: A \to B \) is a function if for all \(a \in A \), there is a unique \(b \in B \) such that \(f(a) = b \).

Diagonal Proof:
- If \(A \subseteq B \), then \(A \subseteq C \)
- If \(B \subseteq A \), then \(B \subseteq C \)
- If \(A \cup B \subseteq C \), then \(A \subseteq C \) or \(B \subseteq C \)