At the top of your submission, list all the sources you consulted, or write "Sources consulted: none" if you did not consult any sources.

1. Let \(R \subseteq \mathbb{C}[x] \) be the subring of polynomials \(P \) such that the coefficient of \(x \) in \(P \) is zero.

 (a) (1 point) Give an embedding of \(\text{Spec} R \) into \(\mathbb{A}^2 \), and show that the image has a cusp.

 (b) (1 point) Find a smooth curve \(\text{Spec} S \) with a map \(\text{Spec} S \to \text{Spec} R \) which is an isomorphism on topological spaces. Observe that this means that the composition \(\text{Spec} S \to \text{Spec} R \to \mathbb{A}^2 \) is a closed embedding of topological spaces but not a closed embedding of algebraic varieties.

2. (2 points) Let \(R \) be a finite type \(\mathbb{C} \)-algebra that is integral (i.e., has no zero-divisors.) Let \(S \) be a multiplicative system in \(R \). Show that the localization \(R_S \) is a finite type \(\mathbb{C} \)-algebra if and only if it is isomorphic to the localization \(R_f \) at a single nonzero element \(f \). (Recall that \(R_f \) is the localization of \(R \) at the multiplicative system \(\{1, f, f^2, \cdots \} \).

3. Our definition of \(\text{Spec} R \) as a topological space still makes sense for rings \(R \) which are not finite type \(\mathbb{C} \)-algebras. We will not worry too much about such algebras in this class, but let us briefly discuss the case of \(\mathbb{R} \)-algebras.

 (a) (1 point) Classify the maximal ideals of \(\mathbb{R}[x] \), and describe the map

 \[\text{Spec}(\mathbb{C}[x]) \to \text{Spec}(\mathbb{R}[x]). \]

 (b) (1 point) Classify the maximal ideals of \(\mathbb{R}[x,y]/(x^2 + y^2 + 1) \), and describe the map

 \[\text{Spec}(\mathbb{C}[x,y]/(x^2 + y^2 + 1)) \to \text{Spec}(\mathbb{R}[x,y]/(x^2 + y^2 + 1)). \]

 Note that the vanishing locus of \(x^2 + y^2 + 1 = 0 \) in \(\mathbb{R}^2 \) is empty, and yet we can still study the algebraic geometry of this ring.
4. Let S be a subset of \mathbb{Z}^n containing 0 and closed under addition (in other words, a sub-semigroup of \mathbb{Z}^n). We can define a ring $\mathbb{C}[S]$ whose elements are formal linear combinations $\sum a_i t^s_i$ with the $s_i \in S$, with multiplication determined by the rule $t^s_i \cdot t^{s_j} = t^{s_i + s_j}$. An affine toric variety is the spectrum of a ring $\mathbb{C}[S]$. Toric varieties give a large family of easy examples of varieties.

(a) (1 point) Show that every inclusion $S \subseteq S'$ gives a map of toric varieties $\text{Spec} \mathbb{C}[S'] \to \text{Spec} \mathbb{C}[S]$.

(b) (1 point) Show that any toric variety has an open subset which is isomorphic to a torus (i.e., the spectrum of an algebra $\mathbb{C}[x_i, x_i^{-1}]$).

This is why these varieties are called toric.

5. (2 points) Recall in class that we mentioned that $X = \mathbb{A}^2 - \{(0,0)\}$ is not an affine variety. More precisely, we claim that there is no affine variety Y with a map $\pi : Y \to \mathbb{A}^2$ and two open subvarieties U and V satisfying the following properties:

- Y is the union of U and V
- π induces an isomorphism of varieties between U (respectively, V) and the complement of the x-axis (respectively, the y-axis) in \mathbb{A}^2
- π induces an isomorphism of varieties between the intersection $U \cap V$ and the locus where xy does not vanish in \mathbb{A}^2.

Prove this. (Hint: One way of doing this is to think about maps from such a variety Y to \mathbb{A}^1.)

6. (1 point) Look up the definition of a sheaf. Use google to find as many motivations as you can for why you would define such an object. Elaborate on the one you find most convincing.