Broken Functions

1. Summary
 - Convolution
 - BLR test

2. Q&A

3. Problems

Announcements
- 1/21 added

Convolution - \(\{(g \ast h)(x) = \int_{\mathbb{R}} g(y)h(x-y) \, dy \} \)

Theorem. \(\hat{g}(\xi) \ast \hat{h}(\xi) = \hat{f}(\xi) \)

\[\xi = \xi_x \]

\(H \) - rows/columns, \(x \) - character

\[(H_{x,y})^* = (1, x_y) \cdot (1, 15) < 0 \]

Let \(\text{diag}(g) \in \mathbb{R}^{(g^T + g)} \), diagonal

\[\text{diag}(g)_{xy} = g(xy) \]

Claim: \((H \cdot \text{diag}(g))_{x,y} = \hat{g}(\xi) \)

165. it's equal to \(\)\(\)

1. \(x_y \), \(-1 \)

Proof (for \(\text{diag}(g) \)) - \(\text{diag}(g) \)

\[\sum_{z = 0}^{15} g(z \cdot 2^2) = \hat{g}(\xi) \ast \hat{h}(\xi) \]

BLR - given every access to \(f, \xi \)

\[F_{\xi} = \{ \xi \} \]

check if its linear, \(\langle f, \xi \rangle = \langle f, \xi \rangle \)

for all \(x, y \).

Choose \(x, y \) at random, check if:

\[\langle f(x), f(y) \rangle = \langle f(x), f(y) \rangle \]

Acceptance probability is \(\frac{1}{2} + \frac{1}{2} \sum \hat{f}(\xi)^2 \)

If \(\hat{f} \) is constant \(\sum \hat{f}(\xi) = \sum \hat{f}(\xi) + 1 \)

on just one \(\xi \), \(\sum \hat{f}(\xi) = 1 \)

spread out \(\sum \hat{f}(\xi) = \sum \hat{f}(\xi) + 1 \)

\(\hat{f} = \hat{f}(\xi) \cdot \hat{f}(\xi) \)

Jensen's inequality is \(0 < \xi x \)

\[E \left[(f(x))^p \right] \leq E \left[(f(x))^q \right] \]

\[\| f \|_p = \| f \|_p \]

Commutivity

Each week - 1 assignment

\(L. \) breakouts

Problem 1 - Rooms 1, 2, 3

Problem 2 - Rooms 2, 3

Problem 3 - Rooms 2, 3

Problem 4 - Rooms 3, 4