Lecture #13: The Singular Value Decomposition.

Today we will cover arguably the most powerful tool in linear algebra:

SVD: Given an \(n \times m \) matrix \(A \), there is always a way to write it as

\[
A = U \Sigma V^T
\]

where

1. \(U \) and \(V \) have orthonormal columns

2. and \(\Sigma \) is nonnegative and diagonal

\[
\Sigma = \begin{bmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]

and \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \sigma_{r+2} = \ldots = 0 \)

First, there is an alternative expression that is sometimes more convenient:

\[
A = \sum_{i=1}^{r} \sigma_i u_i v_i^T
\]
Some nomenclature:

1. the σ_i's are called **singular values**
2. the u_i's and v_i's are called the **left** and **right singular vectors**, respectively.

We'll spend this lecture digesting what this decomposition means, i.e.

How can we read off important properties of A from it?

Let's start from the geometry and understand what happens to the **unit ball**:

$$B = \{ x \mid \|x\| \leq 1, x \in \mathbb{R}^n \}$$

Let's visualize what's happening as we apply V^T, Σ, then U
In particular, the unit ball looks like:

\[B = \{ V^T x \mid \|x\| \leq 1, x \in \mathbb{R}^m \} \]

Q1: What happens when we apply \(V^T \)?

Multiplying by \(V^T \) does not change the length of a vector.

Q2: What happens when we multiply by \(\Xi \)?

It's just the coordinates that are different.
we get something like

This just changes the ball into ellipsoid

And finally, multiplying by U we get

It's principal axes are $\sigma_i u_i, \ldots$

Let's see it in action

Application: Uncertainty regions

In many applications like MRI, we get linear measurements of some unknown x
e.g. a picture we would like to reconstruct

\[y = Ax + z \]

\[\uparrow \text{noise, suppose } \|z\| \leq \delta \]

How can we reconstruct \(x \) approximately?

Let's suppose \(A \) has full column rank

\[\text{(1)} \]

Why? otherwise it would not be possible to recover \(x \) even with noise

Property (1) is equivalent to:

"\(A \) has a left inverse, i.e. a matrix \(N \) so that \(NA = I \)" (lecture 8)

So if we estimate \(x \) using

\[\hat{x} = Ny \]

what can we say about the reconstruction error \(\hat{x} - x \)?
\[\hat{x} - x = N \left(Ax + \epsilon \right) - x = x + N\epsilon \]

Hence the error is in an uncertainty ellipsoid:

\[\{ N\epsilon \mid \| \epsilon \| \leq \delta \} \]

Side note: Is the left inverse unique?

No, consider

\[A = \begin{bmatrix} M \\ 3M \end{bmatrix} \]

Q3: Does using the left inverse of the top/bottom dominate the other?

Now let's see how we can read off facts about \(A \) from its SVD

Property 1: The rank of \(A \) is the \# of non-zero singular values
Property 2: The vectors u_1, u_2, \ldots, u_r are an orthonormal basis for $\mathcal{C}(A)$

Let's get some intuition for this

Q4: How should I choose x so that Ax is in the direction of u_i?

Recall the second expression for the SVD

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \ldots + \sigma_r u_r v_r^T$$

Now if I choose $x = v_1$, then

$$Ax = \sigma_1 u_1 v_1^T v_1 + \sigma_2 u_2 v_2^T v_1 + \ldots$$

This follows from the v_i's being orthonormal

Similarly $A v_i = \sigma_i u_i$ for all i, so I know that every $u_i \in \mathcal{C}(A)$.
Conversely for any x I get

$$Ax = \sigma_1 u_1 v_1^T x + \sigma_2 u_2 v_2^T x + \ldots$$

which is a linear combination of u_i's.

This proves $\text{C}(A) = \text{span } (u_1, u_2, \ldots, u_n)$, and by assumption the u_i's are orthonormal.

Similarly we have:

Property 3: The vectors $v_{r+1}, v_{r+2}, \ldots, v_m$ are an orthonormal basis for $\text{N}(A)$.

In particular consider Ax for $x = v_{r+1}$

$$Ax = \sigma_1 u_1 v_{r+1}^T + \sigma_2 u_2 v_{r+1}^T + \ldots$$

again by orthonormality.

In fact the SVD also contains powerful theorems as a corollary:
Recall:

Rank-Nullity Theorem: For any $n \times m$ matrix A, we have that $\text{rank}(A) + \dim(\text{null}(A)) = m$

Q5: How can we see that from the SVD?

$\text{rank}(A) = r$

$\dim(\text{null}(A)) = m - r$

Not only that but we can directly compute A^{-1} (if it exists) from the SVD too!

Fact: Suppose A is square and invertible and has SVD $A = U \Sigma V^T$. Then

$A^{-1} = V \Sigma^{-1} U^T$

First let's see why this is natural

$A^{-1} = (U \Sigma V^T)^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1}$
But since U and V^T are orthogonal, we have that $U^{-1} = U^T$ and $(V^T)^{-1} = V$, hence:

$$A^{-1} = V \Sigma^{-1} U^T$$

It's useful to double-check that this indeed works:

$$V \Sigma^{-1} U^T A = V \Sigma^{-1} U^T U \Sigma V^T$$

$$= V \Sigma^{-1} \Sigma V^T$$

$$= V V^T = I$$

In fact even when A is not invertible (or may be not even square) we can still do the next best thing:

Definition: The pseudo-inverse, denoted by A^+, of A is

$$A^+ = \sum_{i=1}^{\tilde{r}} \sigma_i^{-1} v_i u_i^T$$
what does this do? Let's try AA^+:

$$AA^+ = \left(\sum_{i=1}^{r} \sigma_i u_i v_i^T \right) \left(\sum_{i=1}^{r} \sigma_i^{-1} v_i u_i^T \right)$$

$$= \sum_{i=1}^{r} \sigma_i \sigma_i^{-1} u_i u_i^T = \sum_{i=1}^{r} u_i u_i^T$$

Hence $AA^+ = \sum_{i=1}^{r} u_i u_i^T =$ projection onto $\text{C}(A)$

Similarly we have that

$$A^+A = \sum_{i=1}^{r} v_i v_i^T = \text{projection onto } \text{N}(A)^\perp$$

Now returning to our application in estimation we know that the left inverse of A is not always unique, but

Q6: What is the best left inverse to use, in terms of minimizing the uncertainty ellipsoid?
It turns out that it is A^+, i.e.

Fact: The uncertainty ellipsoid for A^+ is contained in those of any other left inverse.