Graphing Inequalities in Two Variables

Then
- You graphed linear equations.

Now
1. Graph linear inequalities on the coordinate plane.
2. Solve inequalities by graphing.

Why?
- Hannah has budgeted $35 every three months for car maintenance. From this she must buy oil costing $3 and filters that cost $7 each. How much oil and how many filters can Hannah buy and stay within her budget?

New Vocabulary
- boundary
- half-plane
- closed half-plane
- open half-plane

Common Core State Standards

Content Standards
- A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
- A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Mathematical Practices
- 5 Use appropriate tools strategically.

1 Graph Linear Inequalities

The graph of a linear inequality is the set of points that represent all of the possible solutions of that inequality. An equation defines a **boundary**, which divides the coordinate plane into two **half-planes**.

The boundary may or may not be included in the solution. When it is included, the solution is a **closed half-plane**. When not included, the solution is an **open half-plane**.

Key Concept

Graphing Linear Inequalities

Step 1
Graph the boundary. Use a solid line when the inequality contains \(\leq \) or \(\geq \).
Use a dashed line when the inequality contains \(< \) or \(> \).

Step 2
Use a test point to determine which half-plane should be shaded.

Step 3
Shade the half-plane that contains the solution.

Example 1
Graph an Inequality (\(<\) or \(\geq\))

Graph \(3x - y < 2\).

Step 1
First, solve for \(y\) in terms of \(x\).
\[3x - y < 2\]
\[-y < -3x + 2\]
\[y > 3x - 2\]

Then, graph \(y = 3x - 2\). Because the inequality involves \(>\), graph the boundary with a dashed line.

Step 2
Select \((0, 0)\) as a test point.
\[3(0) - 0 < 2 \quad \text{Original inequality}\]
\[0 < 2 \quad \text{true}\]

Step 3
So, the half-plane containing the origin is the solution. Shade this half-plane.

Guided Practice
Graph each inequality.

1A. \(y > \frac{1}{2}x + 3\)
1B. \(x - 1 > y\)
Example 2: Graph an Inequality (≤ or ≥)

Graph \(x + 5y \leq 10. \)

Step 1 Solve for \(y \) in terms of \(x. \)

\[
x + 5y \leq 10 \\
y \leq -\frac{x}{5} + 2 \text{ or } y = -\frac{x}{5} + 2. \text{ Because the inequality symbol is } \leq, \text{ graph the boundary with a solid line.}
\]

Step 2 Select a test point. Let's use \((3, 3).\) Substitute the values into the original inequality.

\[
x + 5y \leq 10 \text{ Original inequality} \\
3 + 5(3) \leq 10 \text{ Substitute } x = 3 \text{ and } y = 3 \\
18 \leq 10 \text{ Simplify}
\]

Step 3 Since this statement is false, shade the other half-plane.

Guided Practice

Graph each inequality.

2A. \(x - y \leq 3 \)
2B. \(2x + 3y \geq 18 \)

Solve Linear Inequalities

We can use a coordinate plane to solve inequalities with one variable.

Example 3: Solve Inequalities from Graphs

Use a graph to solve \(3x + 5 < 14. \)

Step 1 First graph the boundary, which is the related equation. Replace the inequality sign with an equals sign, and solve for \(x. \)

\[
3x + 5 < 14 \text{ Original inequality} \\
3x < 9 \text{ Subtract 5 from each side and simplify.} \\
x < 3 \text{ Divide each side by 3.}
\]

Graph \(x = 3 \) with a dashed line.

Step 2 Choose \((0, 0)\) as a test point. These values in the original inequality give us \(5 < 14. \)

Step 3 Since this statement is true, shade the half-plane that contains the point \((0, 0).\)

Notice that the \(x\)-intercept of the graph is at \(3.\)

Since the half-plane to the left of the \(x\)-intercept is shaded, the solution is \(x < 3. \)

Guided Practice

Use a graph to solve each inequality.

3A. \(4x - 3 \geq 17 \)
3B. \(-2x + 6 > 12 \)

An inequality can be viewed as a constraint in a problem situation. Each solution of the inequality represents a combination that meets the constraint. In real-world problems, the domain and range are often restricted to nonnegative or whole numbers.

Real-World Link

As a supplement to traditional yearbooks, many schools are producing digital versions. They include features that allow you to click on a picture and see a short video clip. Source: retired news

Class Picnic

A yearbook company promises to give the junior class a picnic if they spend at least $28,000 on yearbooks and class rings. Each yearbook costs $35, and each class ring costs $140. How many yearbooks and class rings must the junior class buy to get their picnic?

Understand

You know the cost of each item and the minimum amount the class needs to spend.

Plan

Let \(x = \) the number of yearbooks and \(y = \) the number of class rings the class must buy. Write an inequality.

\[
35x + 140y \geq 28,000 \text{ times the number of yearbooks plus } 140y \text{ times the number of rings is at least } 28,000.
\]

\[
35 \cdot x + 140 \cdot y \geq 28,000
\]

Solve

Solve for \(y \) in terms of \(x. \)

\[
35x + 140y - 35x \geq 28,000 - 35x \\
140y = -35x + 28,000 \\
140y = 140 \geq -35x + 28,000 \\
y = -0.25x + 200
\]

Because the yearbook company cannot sell a negative number of items, the domain and range must be nonnegative numbers. Graph the boundary with a solid line. If we test \((0, 0)\), the result is \(0 \geq 28,000 \), which is false. Shade the closed half-plane that does not include \((0, 0).\)

One solution is \((300, 100),\) or 300 yearbooks and 100 class rings.

Check

If we test \((300, 100),\) the result is \(100 \geq 75, \) which is true. Because the company cannot sell a fraction of an item, only points with whole-number coordinates can be solutions.

4. **Marathons**

Neil wants to run a marathon for at least 6 miles per hour. Write and graph an inequality for the miles \(y \) he will run in \(x \) hours.
Check Your Understanding

Examples 1-2 Graph each inequality.
1. \(y \geq x + 3 \)
2. \(y \geq -8 \)
3. \(x + y > 1 \)
4. \(y \leq -6 \)
5. \(y < 2x - 4 \)
6. \(x - y \leq 4 \)

Example 3 Use a graph to solve each inequality.
7. \(7x + 1 < 15 \)
8. \(-3x - 2 \geq 11 \)
9. \(3y - 5 \leq 34 \)
10. \(4y - 21 > 1 \)

Example 4 FINANCIAL LITERACY The surf shop has a weekly overhead of $2300.

a. Write an inequality to represent the number of skisboards and longboards the shop sells each week to make a profit.

b. How many skisboards and longboards must the shop sell each week to make a profit?

Practice and Problem Solving

Examples 1-2 Graph each inequality.
12. \(y < x - 3 \)
13. \(y > x + 12 \)
14. \(y \geq 3x - 1 \)
15. \(y \leq -4x + 12 \)
16. \(6x + 3y > 12 \)
17. \(2x + 2y < 18 \)
18. \(3x + y > 10 \)
19. \(2x + y < -3 \)
20. \(-2x + y > -4 \)
21. \(8x + y \leq 6 \)
22. \(10x + 2y \leq 14 \)
23. \(-24x + 8y \geq -48 \)

Example 3 Use a graph to solve each inequality.
24. \(10x - 8 < 22 \)
25. \(20x - 5 > 35 \)
26. \(4y - 77 \geq 23 \)
27. \(5y + 8 \leq 33 \)
28. \(35x + 25 < 6 \)
29. \(14x - 12 > -31 \)

Example 4 CSS MODELING Sybrina is decorating her bedroom. She has $300 to spend on paint and bed linens. A gallon of paint costs $14, while a set of bed linens costs $60.

a. Write an inequality for this situation.
b. How many gallons of paint and bed linens sets can Sybrina buy and stay within her budget?

Use a graph to solve each inequality.
31. \(3x + 2 < 0 \)
32. \(4x - 1 > 3 \)
33. \(-6x - 8 \geq -4 \)
34. \(-5x + 1 < 3 \)
35. \(-7x + 13 < 10 \)
36. \(-4x - 4 \leq -6 \)

SOCCER The girls' soccer team wants to raise $2000 to buy new goals. How many of each item must they sell to buy the goals?

a. Write an inequality that represents this situation.
b. Graph this inequality.
c. Make a table of values that shows at least five possible solutions.
d. Plot the solutions from part c.

Graph each inequality. Determine which of the ordered pairs are part of the solution set for each inequality.
38. \(y \geq 6 \) \(\{(0, 4), (-2, 7), (4, 8), (-4, -8), (1, 6)\} \)
39. \(x < -4 \) \(\{(2, 1), (-3, 0), (0, -3), (-5, -5), (-4, 2)\} \)
40. \(2x - 3y \leq 1 \) \(\{(2, 3), (3, 1), (0, 0), (0, -1), (5, 3)\} \)
41. \(5x + 7y \geq 10 \) \(\{(-2, 2), (1, -1), (1, 1), (2, 5), (6, 0)\} \)
42. \(-3x + 5y < 10 \) \(\{(3, -1), (1, 1), (0, 8), (-2, 0), (0, 2)\} \)
43. \(2x - 2y > 4 \) \(\{(0, 0), (0, 7), (7, 5), (5, 3), (2, -5)\} \)

44. RECYCLING Mr. Jones would like to spend no more than $37.50 per week on recycling. A curbside recycling service will remove up to 50 pounds of plastic bottles and paper products per week. They charge $0.25 per pound of plastic and $0.75 per pound of paper products.

a. Write an inequality that describes the number of pounds of each product that can be included in the curbside service.
b. Write an inequality that describes Mr. Jones' weekly cost for the service if he stays within his budget.
c. Graph an inequality for the weekly costs for the service.

45. MULTIPLE REPRESENTATIONS Use inequalities A and B to investigate graphing compound inequalities on a coordinate plane.

A. \(7(y + 6) \leq 21x + 14 \)
B. \(-3y \leq 3x - 12 \)

a. Numerical Solve each inequality for \(y \).
b. Graphical Graph both inequalities on one graph. Shade the half-plane that makes \(A \) true in red. Shade the half-plane that makes \(B \) true in blue.
c. Verbal What does the overlapping region represent?

H.O.T. Problems Use Higher-Order Thinking Skills

46. ERROR ANALYSIS Reiko and Kristin are solving \(4y \leq \frac{5}{3} \) by graphing. Is either of them correct? Explain your reasoning.

47. CSS TOOLS Write a linear inequality for which \((-1, 2), (0, 1), \) and \((3, -4)\) are solutions but \((1, 1)\) is not.

48. REASONING Explain why a point on the boundary should not be used as a test point.

49. OPEN ENDED Write a two-variable inequality with a restricted domain and range to represent a real-world situation. Give the domain and range, and explain why they are restricted.

50. WRITING IN MATH Summarize the steps to graph an inequality in two variables.
51. What is the domain of this function?

A \(\{ x \mid 0 \leq x \leq 3 \} \)
B \(\{ x \mid 0 \leq x \leq 9 \} \)
C \(\{ y \mid 0 \leq y \leq 9 \} \)
D \(\{ y \mid 0 \leq y \leq 3 \} \)

52. EXTENDED RESPONSE An arboretum will close for the winter when all of the trees have lost their leaves. The table shows the number of trees each day that still have leaves.

<table>
<thead>
<tr>
<th>Day</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees with Leaves</td>
<td>325</td>
<td>260</td>
<td>195</td>
<td>130</td>
</tr>
</tbody>
</table>

a. Write an equation that represents the number of trees with leaves \(y \) after \(d \) days.

b. Find the \(y \)-intercept. What does it mean in the context of this problem?

c. After how many days will the arboretum close? Explain how you got your answer.

53. Which inequality best represents the statement below?

A jar contains 832 gumballs. Ebony’s guess was within 46 pieces.

F \(|g - 832| \leq 46 \)
G \(|g + 832| \leq 46 \)
H \(|g - 832| \geq 46 \)
J \(|g + 832| \geq 46 \)

54. GEOMETRY If the rectangular prism has a volume of 10,080 cm\(^3\), what is the value of \(x \)?

a. 12
b. 14
c. 16
d. 18

55. \(|y - 2| > 4 \)

56. \(|t - 6| \leq 5 \)

57. \(|3 + d| < -4 \)

58. \(4c - 4 < 8c - 16 < 6c - 6 \)

59. \(5 < \frac{1}{2}p + 3 < 8 \)

60. \(0.5n \geq -7 \) or \(2.5n + 2 \leq 9 \)

61. (1, -3) and (2, 5)

62. (−2, −4) and (−7, 3)

63. (−6, −8) and (−8, −5)

64. FITNESS The table shows the maximum heart rate to maintain during aerobic activities. Write an equation in function notation for the relation. Determine what would be the maximum heart rate to maintain in aerobic training for an 80-year-old.

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse rate (beats/min)</td>
<td>175</td>
<td>166</td>
<td>157</td>
<td>148</td>
<td>139</td>
<td>130</td>
</tr>
</tbody>
</table>

65. WORK The formula \(s = \frac{w - 10r}{m} \) is used to find keyboarding speeds. In the formula, \(s \) represents the speed in words per minute, \(w \) the number of words typed, \(r \) the number of errors, and \(m \) the number of minutes typed. Solve for \(r \).