Wound Care Priorities: ESP + E

- Correct etiologic factors
- Provide systemic support
- Provide principle-based topical tx
- Evaluate progress on routine basis

Management Goals

- Three potential goals
 - Comfort
 - Maintenance
 - Healing
- Comfort goal
 - End of life care
 - Focus is on minimizing wound related discomfort (pain, odor, etc.)

 - Inability to correct underlying pathology
 - Inability to provide systemic support (perfusion, nutrition, etc.)
 - Terminally ill patient
 - Necrotic uninfected heel ulcer in bedbound pt
 - Healing

- Healing
 - Goal whenever etiologic factors can be corrected and patient has ability to heal
Principle-Based Topical Therapy

• Eliminate impediments
 • Necrotic tissue
 • Excess bioburden
 • Excess or “trapped” exudate
 • Closed wound edges
• Maintain optimal environment for healing: moist, insulated, protected

Topical Therapy Acronym

• D = Debride necrotic tissue
• I = Identify and treat infection
• W = Wick fluid from tunneled/undermined areas
• A = Absorb excess exudate
• M = Maintain moist wound surface
• O = Open wound edges
• P = Protect healing wound
• I = Insulate healing wound

Monitor Response to Therapy

• Expectations: consistent progress toward healing
 • Inflammatory stage: establishment clean wound bed
 • Proliferative stage: granulation/epithelial resurfacing
• Evidence of trouble
 • No progress for 2 consecutive weeks
 • Deterioration
• Indications for change in topical therapy
Wound Cleansing

- Acute traumatic wounds (e.g., laceration)
 - X-ray if needed to R/O retained foreign body
 - Thorough cleansing to remove all debris
 - Surfactant + soft sponge
 - Pulsed irrigation
 - Tetanus?

Wound Cleansing Guidelines

- Clean Wounds
 - Gentle flushing
 - Noncytotoxic solution

- Dirty Wounds
 - Irrigation with 8 – 15 psi force (pulsed lavage one option)
 - Antiseptics sometimes used for cleansing/packing
 - Hydrogen peroxide???

Management Necrotic Wounds

- Two Major Questions:
 - Should this wound be debrided?
 - If so, what is the best approach to debridement of this wound?
 - Instrumental?
 - Non-instrumental?
Indications for Debridement

- Anytime the goal is repair
- Anytime the wound is already open (necrotic tissue in an open wound increases risk of infection)
- When wound is clinically infected (even if goal is comfort or maintenance): to reduce pain and odor

Contraindications to Debridement

- Wound in which goal is comfort or maintenance and
- Wound is closed and covered by necrotic tissue
- Necrotic tissue is dry; there is no drainage or seepage
- There are no signs of clinical infection (erythema, induration)
- Dry necrotic uninfected heel ulcer in bedbound patient (why?)

Options for Instrumental Debridement

- Surgical Debridement
 - Sterile excision all necrotic tissue
 - Converts chronic wound to acute wound
 - Good option for wound with large amount of necrotic tissue or wounds with bone/joint involvement
 - Must consider risk associated with surgery
 - Overall patient condition
 - Coagulation disorders and active infection usual contraindications
Options for Instrumental Debridement

• Conservative Sharp Wound Debridement
 • Removal loose avascular tissue at bedside with sterile instruments
 • Good option for loose necrotic tissue in uninfected wound
 • Must have qualified practitioner (consider state nurse practice act)
 • Used in conjunction with other approaches to debridement

Instrumental Debridement: Guidelines

• Pre-procedural assessment
 • R/O contraindications
 • General contraindications (dry closed uninfected wound when goal is comfort or maintenance)
 • Adherence of eschar
 • Clotting disorders (unless avascular tissue very loose so no risk of vascular access)
 • Systemic or soft tissue infection (unless no risk of vascular access)

Instrumental Debridement: Guidelines for CSWD

• Critical skills for safe performance CSWD
 • Ability to identify viable structures that must be avoided (e.g., tendons)
 • Ability to establish plane of dissection between viable and non-viable tissue
• Procedure
 • Prep area with antiseptic
 • Remove necrotic tissue
 • Flush thoroughly
Non-Instrumental Debridement

- General Concepts
 - Should be used when debridement needed but instrumental debridement not an option (clotting issues, infection, care setting issues)
 - Slower but safer than instrumental
 - Sometimes used in conjunction with instrumental
 - Options: enzymatic; chemical; autolytic; hydrotherapy; larval therapy; ultrasonic

Non-Instrumental Debridement

- Enzymatic
 - Selective and noninvasive
 - Must follow manufacturer’s guidelines for use
 - Nickel thick layer
 - Moist cover dressing
 - Daily application
 - Cannot use with silver or iodine
 - Must crosshatch dry eschar
 - Must consider cost

Non-Instrumental Debridement

- Autolytic
 - Uses body’s own WBCs to debride
 - Requires moist wound bed
 - Requires adequate numbers WBCs
 - Indications:
 - Limited necrotic tissue
 - Dry adherent eschar
 - Good dressing options
 - Dry wound: hydrogel; transparent adhesive; honey-based gel, etc.
 - Wet wound: alginates; hydrofibers, etc.
Non-Instrumental Debridement

• Chemical Debridement (e.g., sodium hypochlorite solutions)
 • Actions: antimicrobial; odor elimination; breakdown necrotic tissue (limited data re: debridement properties)
 • Good choice for necrotic infected wound
 • Inexpensive but must change Q 12 – 24 hrs
 • D/C when wound clean
 • Options: Dakin’s 0.025 – 0.0125%; Didaksol; Anasept; Microcyn; Puracyn; Vashe, etc

Non-Instrumental Debridement

• Hydrotherapy
 • Used to soften and loosen necrotic tissue
 • Recommended pressures: 8-15 psi
 • Pulsed lavage more commonly used
 • Need personal protective equipment (private room)
 • Avoid blood vessels and graft sites; monitor pt on anticoagulants for bleeding
 • Avoid pressures >15 psi

Non-Instrumental Debridement

• Ultrasound Debridement
 • Use of ultrasound-powered saline mist to remove slough, fibrinous exudate, bacteria
 • Contact vs non-contact; contact ultrasound may be more effective for debridement
 • More costly than other methods but less painful than instrumental debridement
Options for Debridement

• Wet to dry gauze (put gauze in wound wet; allow to dry; remove)
 • No longer recommended; should use moist to moist (autolytic)
 • New “debriding sponges/swabs” helpful in removing thin layers of slough and hyperkeratotic skin around wound

• “Larval therapy” (aka “maggot debridement therapy” – MDT)
 • Being used in many centers esp for difficult wounds
 • Action restricted to necrotic tissue
 • Available “free range” and “contained”
 • Antimicrobial benefit + debridement
 • More data needed

Management of Infected Wounds

• General considerations
 • All open wounds contaminated by bacteria
 • Contamination vs colonization vs critical colonization (surface infection)
 • Negative effects high bacterial loads
• Implications for management
 • Contamination/colonization: no treatment
 • Critical colonization (surface infection): topical vs
 • Invasive infection: treat systemically
Management Infected Wounds

• Surgical incisions
 • Preventive care: preop measures; occlusive dressing immediately postop
 • Treatment: drainage if needed; antibiotics
 • Chronic wounds: tx dependent on tissues involved
 • Bone (osteomyelitis)
 • Soft tissue (cellulitis)
 • Wound surface

Infected Wounds

• Infection involving bone
 • Clinical S/S: visible or palpable bone; nonhealing tunnel
 • Diagnosis:
 • MRI is “gold standard”
 • Alternatives: bone scan, bone biopsy, labs
 • Treatment
 • Orthopedic (and possibly ID) consults
 • May need to excise infected bone
 • Longterm antibiotics; HBOT???

Infected Wounds

• Infection involving soft tissue:
 • Clinical S/S: redness, heat, edema, pain, exudate, induration*
 • Diagnosis
 • Clinical dx
 • Wound cultures obtained to direct treatment
 • Treatment: systemic antibiotics

*Note impact immunosuppression or diminished perfusion on clinical presentation
Culture Guidelines

- Aerobic vs anaerobic
- Qualitative vs quantitative
 - Swab provides qualitative data (what)
 - Punch biopsy provides qualitative and quantitative (colony counts) (what and how many)
 - Colony counts > 100,000 org/ml = infection
 - Colony counts > 100,000 org/ml + clinical signs impaired healing: suggest surface infection
 - Any level ẞ hemolytic strip indicates infection in acute wound; in chronic wound colony counts > 10³

Infected Wounds:

- Culture guidelines:
 - Purpose: to determine infecting organism and antibiotics to which it is sensitive
 - Procedure:
 - Wound biopsy (punch culture) OR
 - Swab (Levine technique)
 - Flush with N/S
 - Swab 1 sq cm of viable tissue till exudate obtained

Infected Wounds

- Wounds with surface infection (critical colonization)
 - Clinical S/S: deterioration in quantity or quality of granulation tissue; persistent high volumes of exudate; pain; odor; recurrent formation slimy "film" on wound surface
 - Diagnosis: Clinical diagnosis (note importance serial assessments)
 - Treatment: topical therapy to reduce bacterial loads (e.g., cleansers, antimicrobial dressings, etc.)
Infected Wounds

• Wounds with surface infection at risk for biofilm formation
 • Definition: community of bacteria protected by slimy film that protects organisms against ABX, WBCs, and many antimicrobial agents
 • Pseudomonas, staph common biofilm agents
 • Process: planktonic to sessile bacteria; signaling between organisms; biofilm construction
 • End result: “gated community”; persistent inflammation
 • Dx: clinical (recurrent film one indicator)

Infected Wounds

• Management Wounds with Biofilm Formation
 • Mechanically remove/disrupt biofilm (blunt curette, debriding sponge, wet gauze)
 • Thoroughly irrigate
 • Antimicrobial dressing to kill planktonic bacteria and prevent recurrent biofilm
 • Cadexomer iodine may penetrate biofilm
 • Surfactant gel may eliminate biofilm

Management Infected Wounds

• Debride necrotic tissue/remove “biofilm”
• Use irrigation force 8 – 15 psi for cleansing
• Topical therapy for surface infections
 • Antiseptics and antimicrobial dressings most common approach (no culture needed)
• Systemic antibiotics for soft tissue infections and infections involving bone (culture driven if possible)
Topical Agents for Wounds with Surface Infection

- Antiseptics for cleansing (and packing?)
 - Use for packing remains controversial
 - Indicated only for wounds in inflammatory phase; discontinue when wound clean
 - Options
 - Dilute Dakin’s or comparable solution
 - Povidone-iodine solution (1%)
 - Acetic acid 0.25%

Topical Agents for Wounds with Surface Infection

- Antimicrobial Dressings
 - Cadexomer iodine (sustained release iodine)
 - Intended for exudative wounds
 - May penetrate biofilm
 - Consider size of wound and allergies
 - Sustained release silver
 - Available at dressing types so can match dressing to wound and get antimicrobial effects
 - Some donate silver to wound bed, others kill organisms within dressing
 - No evidence bacteria resistance to date

Topical Agents for Wounds with Surface Infection

- Antimicrobial Dressings
 - Methylene blue & crystal violet + polyvinyl alcohol or polyurethane foam
 - Available only as flat foam dressing and “pipe cleaners” for tunnels at present
 - Antimicrobial and anti-inflammatory effects
 - Some have to be premoistened
 - AMD gauze and packing strips (PHMB)
 - Manuka honey-based dressings
 - Dialkylcarbamoyl chloride (attract and trap bacteria)
Infected Wounds

• Guiding Principle: must intervene when
 • there is invasive infection of soft tissue or bone or
 • the bacterial loads on the surface of the wound are sufficient to interfere with repair

Management wounds with closed wound edges

• Impact: prevent epithelial resurfacing
• Treatment options:
 • Cauterize with silver nitrate
 • Refer for excision of wound edges

Management wounds with hypertrophic granulation tissue

• Impact: impaired epithelial resurfacing
• Causes (theorized)
 • Heavy bacterial loads at surface
 • Overly wet wound surface
• Management
 • Silver nitrate to wound surface
 • Antimicrobial foam
Management Wound Related Pain

• Assessment
 • Pain level
 • Causative factors (persistent pain vs procedural pain)

• Management
 • Persistent pain: around the clock analgesics
 • Procedural pain
 • Premedication
 • Gentle technique and nonadherent dressings
 • “Time-outs”