Recitation 8
Tuesday October 5, 2021

1 Recap

1.1 Orthogonality of Vectors

Let \(u \) and \(v \) be vectors of the same dimension. We say \(u \) and \(v \) are orthogonal iff their angle is 90°, or equivalently \(u \cdot v = u^\top v = v^\top u = 0 \).

In addition, we say that a set of vectors \(\{v_1, v_2, ..., v_n\} \) is pairwise orthogonal iff \(v_i \) and \(v_j \) are orthogonal for any \(i \neq j \in \{1, 2, ..., n\} \). A set of pairwise orthogonal (nonzero) vectors is always linearly independent.

A set of vectors \(\{u_1, u_2, ..., u_n\} \) is pairwise orthonormal if it is pairwise orthogonal, and each \(u_i \) is a unit vector.

1.2 Orthogonality of Subspaces

Two subspaces \(U \) and \(V \) of \(\mathbb{R}^n \) are orthogonal if \(u \cdot v = 0 \) for all \(u \in U \) and \(v \in V \). In addition, it follows that \(\dim U + \dim V \leq n \).

1.3 Orthogonal Complement of Subspaces

Given a subspace \(V \), its orthogonal complement \(V^\perp \) is defined as:

\[
V^\perp = \{ w : w \cdot v = 0 \text{ for any } v \in V \}.
\]

Intuitively, \(V^\perp \) is the largest subspace that is orthogonal to \(V \).

Some important properties include

1. \(\dim V + \dim V^\perp = n \)

2. \((V^\perp)^\perp = V \)

1.4 Decomposition

Theorem 1 Let \(V, W \subseteq \mathbb{R}^n \) are orthogonal complements – that is \(V = W^\perp \) and \(W = V^\perp \).

Then every vector \(x \in \mathbb{R}^n \) has a unique decomposition \(x = v + w \) where \(v \in V \) and \(w \in W \). In addition, it follows that \(v \cdot w = 0 \).
1.5 Some Familiar Orthogonal Complements

We have already seen and worked on orthogonal complements, but we just didn’t realize that they are!

Theorem 2 $N(A)$ and $C(A^T)$ are orthogonal complements in \mathbb{R}^n. Similarly, $C(A)$ and $N(A^T)$ are orthogonal complements in \mathbb{R}^m.

In relation to Theorem 1, we can plug in $V = N(A)$ and $W = C(A^T)$ and derive the following result.

Theorem 3 Suppose that we are given a matrix $A \in \mathbb{R}^{m \times n}$. Any vector $v \in \mathbb{R}^n$ can be written uniquely as $v = v_1 + v_2$ where $v_1 \in N(A)$ and $v_2 \in C(A^T)$.

1.6 Relationship to Projection

Suppose that we want to project a vector v onto a unit vector w, then the projection is

$$\text{proj}_w v = (v \cdot w) w.$$

We note that $v \cdot w$ is a scalar – which ensures that the projection is on w. In general cases where w is not necessarily a unit vector, we have

$$\text{proj}_w v = \left(\frac{v \cdot w}{\|w\|^2} \right) w.$$

1.7 Gram-Schmidt

Let’s suppose that we a set $V = \{v_1, ..., v_k\}$ of linearly independent vectors. Our goal is to transform it into a set of orthonormal vectors W.

Algorithm 1 GRAM-SCHMIDT

Input: a set $V = \{v_1, ..., v_k\}$ of linearly independent vectors

- $w_1 := \text{normalize}(v_1)$
- $w_2 := \text{normalize}(v_2 - \text{proj}_{w_1} v_2)$
- $w_3 := \text{normalize}(v_3 - \text{proj}_{w_1} v_3 - \text{proj}_{w_2} v_3)$
- ...
- $w_k := \text{normalize} \left(v_k - \sum_{i=1}^{k-1} \text{proj}_{w_i} v_k \right)$

Output $W = \{w_1, ..., w_k\}$

One crucial property is that V and W span the same subspace. In other words, if we are given a subspace S which is the span of basis V, we can use Gram-Schmidt to derive its orthonormal basis W – meaning that W is a basis of S and is orthonormal.
2 Exercises

1. Among the following six 3-dimensional vectors, which pairs are orthogonal?

\[
\begin{align*}
 a &= \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \\
 b &= \begin{bmatrix} 2 \\ -6 \\ -3 \end{bmatrix}, \\
 c &= \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}, \\
 d &= \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}, \\
 e &= \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix}, \\
 f &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\end{align*}
\]

2. Denote a subspace \(V = \{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} : 2v_1 + 3v_3 + 5v_5 = 0 \} \). Find \(V^\perp \).

3. Suppose that we have a subspace \(S \) with an orthogonal basis \(\{ v_1, ..., v_k \} \). By the definition of basis, any vector \(v \in S \) can be expressed as

\[
v = \sum_{i=1}^{k} \alpha_i v_i = \alpha_1 v_1 + ... \alpha_k v_k
\]

for some constants \(\alpha_1, ..., \alpha_k \). Determine each \(\alpha_j \) in terms of \(v_1, ..., v_k \) and \(v \). Will the same derivation work if it not for the orthogonality of \(\{ v_1, ..., v_k \} \)?

4. Suppose that a set of vectors \(\{ v_1, ..., v_n \} \) generates a subspace \(S \). In other words, \(S = \text{Span}\{ v_1, ..., v_n \} \). Describe a procedure to derive an orthonormal basis of \(S \).

5. In this problem, we will explore the effect of ordering on the Gram-Schmidt algorithm. Denote

\[
\begin{align*}
 u_1 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \\
 u_2 &= \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \\
 u_3 &= \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}
\end{align*}
\]

and

\[
\begin{align*}
 v_1 &= \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \\
 v_2 &= \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}, \\
 v_3 &= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\end{align*}
\]

for which each \(\{ u_1, u_2, u_3 \} \) and \(\{ v_1, v_2, v_3 \} \) is a set of three linearly independent vectors. Moreover, the two sets \(\{ u_1, u_2, u_3 \} \) and \(\{ v_1, v_2, v_3 \} \) are identical, but are in different orders. This means both sets are bases of the same subspace \(S \).

(a) Perform Gram-Schmidt on \(\{ u_1, u_2, u_3 \} \) to derive an orthonormal basis of \(S \).

(b) Perform Gram-Schmidt on \(\{ v_1, v_2, v_3 \} \) to derive an orthonormal basis of \(S \).

(c) Each of the answer to the previous parts is an orthonormal basis of \(S \). Are they identical? What can we conclude about the effect of order to the Gram-Schmidt?