1. (O 4.17) Let \(f : \{\text{True}, \text{False}\}^n \to \{\text{True}, \text{False}\} \) be computable by a CNF \(C \) of width \(w \). In this exercise you will show that \(I[f] \leq w \). Consider the following randomized algorithm that tries to produce an input \(x \in f^{-1}(\text{True}) \). First, choose a random permutation \(\pi \in S_n \). Then for \(1 = 1, \ldots, n \): If the single-literal clause \(x_{\pi(i)} \) appears in \(C \), then set \(x_{\pi(i)} = \text{True} \), syntactically simplify \(C \) under this setting, and say that coordinate \(\pi(i) \) is “forced”. Similarly, if the single-literal clause \(\overline{x}_{\pi(i)} \) appears in \(C \), then set \(x_{\pi(i)} = \text{False} \), syntactically simplify \(C \), and say that \(\pi(i) \) is “forced”. If neither holds, set \(x_{\pi(i)} \) uniformly at random. If \(C \) ever contains two single-literal clauses \(x_j \) and \(\overline{x}_j \), the algorithm “gives up” and outputs \(x = \bot \).

(a) Show that if \(x \neq \bot \), then \(f(x) = \text{True} \).

Solution:

(b) For \(x \in f^{-1}(\text{True}) \) let \(p(x) = \Pr[x = x] \). For \(j \in [n] \) let \(I_j \) be the indicator random variable for the event that coordinate \(j \in [n] \) is forced. Show that \(p(x) = \mathbb{E}\left[\prod_{j=1}^{n}(1/2)^{1-I_j}\right] \).

Solution:

(c) Deduce \(2^n p(x) \geq 2 \sum_{j=1}^{n} \mathbb{E}[I_j] \).

Solution:

(d) Show that for every \(x \) with \(f(x) = \text{True} \), \(f(x \oplus j) = \text{False} \) it holds that \(\mathbb{E}[I_j \mid x = x] \geq 1/w \).

Solution:

(e) Deduce \(I[f] \leq w \).

Solution:

2. (O 4.19) In this exercise you will prove the Baby Switching Lemma with constant 3 in place of 5. Let \(\phi = T_1 \lor T_2 \lor \cdots \lor T_s \) be a DNF of width \(w \geq 1 \) over variables \(x_1, \ldots, x_n \). We may assume \(\delta \leq 1/3 \), else the theorem is trivial.

(a) Suppose \(R = (J \mid z) \) is a “bad” restriction, meaning that \(\phi_{J\mid z} \) is not a constant function. Let \(i \) be minimal such that \(\phi_{J\mid z} \) is neither constantly True or False, and let \(j \) be minimal such that \(x_j \) or \(\overline{x}_j \) appears in this restricted term. Show there is a unique restriction \(R' = (J \setminus \{j\} \mid z') \) extending \(R \) that doesn’t falsify \(T_i \).

Solution:

(b) Suppose we enumerate all bad restrictions \(R \), and for each we write the associated \(R' \) as in (a). Show that no restriction is written more than \(w \) times.
Solution:

(c) If \((J|z) \) is a \(\delta \)-random restriction and \(R \) and \(R' \) are as in (a), show that
\[
\Pr[(J|z) = R] = \frac{2\delta}{1-\delta} \Pr[(J|z) = R']
\]

Solution:

(d) Complete the proof by showing \(\Pr[(J|z) \text{ is bad}] \leq 3\delta w \)

Solution:

Lecture 9

1. (O 5.2) Let \(f(x) = \text{sgn}(a_0 + a_1 x_1 + \cdots + a_n x_n) \) be an LTF.
 (a) Show that if \(a_0 = 0 \), then \(\mathbb{E}[f] = 0 \). (Hint: Show that \(f \) is in fact an odd function.)

 Solution:

 (b) Show that if \(a_0 \geq 0 \), then \(\mathbb{E}[f] \geq 0 \). Show that the converse need not hold.

 Solution:

 (c) Suppose \(g : \{-1,1\}^n \to \{-1,1\} \) is an LTF with \(\mathbb{E}[g] = 0 \). Show that \(g \) can be represented as \(g(x) = \text{sgn}(c_1 x_1 + \cdots + c_n x_n) \)

 Solution:

2. (O 5.5) Suppose \(\ell : \{-1,1\}^n \to \mathbb{R} \) is defined by \(\ell(x) = a_0 + a_1 x_1 + \cdots + a_n x_n \). Define \(\hat{\ell} : \{-1,1\}^{n+1} \to \mathbb{R} \) is defined by \(\hat{\ell}(x) = a_0 x_0 + a_1 x_1 + \cdots + a_n x_n \). Show that \(\|\ell\|_1 = \|\hat{\ell}\|_1 \) and \(\|\ell\|_2^2 = \|\hat{\ell}\|_2^2 \).

 Solution:

3. (O 5.7) Consider the following “correlation distillation” problem (cf. Exercise 2.56). For each \(i \in [n] \) there is a number \(\rho_i \in [-1,1] \) and an independent sequence of pairs of \(\rho_i \)-correlated bits, \((a_i^{(1)}, b_i^{(1)}), (a_i^{(2)}, b_i^{(2)}), (a_i^{(3)}, b_i^{(3)}), \ldots \) etc. Party A on Earth has access to the stream of bits \(a_i^{(1)}, a_i^{(2)}, a_i^{(3)}, \ldots \) and a party B on Venus has access to the stream \(b_i^{(1)}, b_i^{(2)}, b_i^{(3)}, \ldots \). Neither party knows the numbers \(\rho_1, \ldots, \rho_n \). The goal is for B to estimate these correlations. To assist in this, A can send a small number of bits to B. A reasonable strategy is for A to send \(f(a_i^{(1)}), f(a_i^{(2)}), f(a_i^{(3)}) \) to B, where \(f : \{-1,1\}^n \to \{-1,1\} \) is some Boolean function. Using this information B can try to estimate \(\mathbb{E}[f(a) b_i] \) for each \(i \).
(a) Show that $E[f(a)b_i] = \hat{f}(i)\rho_i$.

Solution:

(b) This motivates choosing an f for which all $\hat{f}(i)$ are large. If we also insist all $\hat{f}(i)$ be equal, show that majority functions f maximize this common value.

Solution:

4. (5.8) For $n \geq 2$, let $f : \{-1,1\}^n \to \{-1,1\}$ be a randomly chosen function (as in Exercise 1.7). Show that $\|f\|_\infty \leq 2\sqrt{n}/2$ except with probability at most 2^{-n}.

Hint: First, consider one Fourier coefficient. Then apply a union bound.

Solution: