Lecture 12: Randomized
Asynchronous Agreement

CS 539 / ECE 526
Distributed Algorithms
Announcements

• PS2 graded and solution sketch uploaded. Regrade requests due tonight.

• P3 due this Friday

• Review lecture next Monday

• Midterm in lecture next Wednesday
 – In class, on Canvas, open book
What can we do about FLP?

• Consider easier problems

• Randomization

• Consider easier models (partial synchrony)

• Agreement, total order bcast, and replication possible in psync or async with randomization
 – Single-value broadcast still impossible
Ben-Or Protocol

• The first randomized async agreement (1983)
 – Tolerate $f < \frac{n}{2}$ crash faults
 • Best possible in psync / async
 – Binary inputs
 • Asynchronous Binary Agreement (ABA)

• Supposed to be simple (still is relatively), but turns out to be much trickier
Ben-Or ABA Protocol

• Party j has input x_j. Will keep updating x_j

Iteration r:

- Round 1: party j sends $(r, \text{vote1}, x_j)$ to all
 - Wait for $n-f$ such msgs

- Round 2: if all $n-f$ vote1 are for the same x, party j sends $(r, \text{vote2}, x)$; else, sends $(r, \text{vote2}, \bot)$
 - Wait for $n-f$ such msgs

- If all $n-f$ vote2 are for the same x, then decide x;
 Else if there is one vote2 for x, then set $x_j = x$;
 Else, set x_j to 0 or 1 randomly. Go to iteration $r+1$.
Ben-Or ABA Protocol

• Party j has input x_j. Will keep updating x_j

 Iteration r:
 - $(y, g) \leftarrow GA_r(x_j)$ // 2-round GA
 - If $g == 1$, then decide y;
 Else if $y \neq \bot$, $x_j \leftarrow y$;
 Else, $x_j \leftarrow$ a random bit
 - Go to iteration $r+1$
Recall Graded Agreement (GA)

- Party j has input x_j:
 - Round 1: party j sends $(\text{vote1}, x_j)$
 - Wait for $n-f$ vote1 msgs
 - Round 2: if all $n-f$ vote1 are for the same x, party j sends $(\text{vote2}, x)$; else, sends $(\text{vote2}, \bot)$
 - Wait for $n-f$ vote2 msgs
 - If all $n-f$ vote2 are for the same x, then output $(x, 1)$; Else if there is one vote2 for x, then output $(x, 0)$; Else, output $(\bot, 0)$.
Recall Graded Agreement (GA)

• n parties, each with an input, up to f faulty
• Each party outputs value y and “grade” bit g
 – g is roughly “confidence”

• Liveness: everyone outputs
• Validity: same inputs x → all output (x, 1)
• Two safety guarantees:
 – S2: One outputs (y, 1), all output (y, *)
 – S3: No (y, *) and (y’, *) for y ≠ y’, y ≠ ⊥, y’ ≠ ⊥
Termination Gadget

• As written, the protocol does not have a termination rule

• Termination gadget for crash faults:
 – Upon deciding x, send “decide x” to all and terminate
 – Upon receiving “decide x”, send “decide x” to all and terminate
Ben-Or ABA Correctness

• Validity: same inputs \(x \rightarrow (x, 1) \) from GA

 – In fact, if all parties start iteration \(r \) with \(x_j = x \),
 then all decide \(x \) in iteration \(r \)

• Safety:

 One party decides \(y \) (for whom \(GA_r \) outputs \((y, 1) \))

 \(\rightarrow GA_r \) outputs \((y, *) \) for all parties (GA S2)

 \(\rightarrow \) All set \(x_j \) to \(y \) \(\rightarrow \) All decide \(y \) in iteration \(r+1 \)
Ben-Or ABA Correctness

• Liveness:
 – GA S3: No (y, *) and (y’, *) for y ≠ y’, y ≠ ⊥, y’ ≠ ⊥
 – Possible outcomes: all $ (coin), 0 and $, or 1 and $
 – If everyone happens to get the same coin flip AND it happens to equal those who adopt GA output …
 • … this happens with exponentially small prob
 – then all parties will start with the same value and will decide in next iteration
Ben-Or ABA Efficiency

• Efficient asynchronous randomized protocols use a “common coin” subroutine

Iteration r:
- \((y, g) \leftarrow GA_r(x_j)\) // 2-round GA
- If \(g == 1\), then decide \(y\);
 Else if \(y \neq \bot\), \(x_j \leftarrow y\);
 Else, \(x_j \leftarrow C_r\) // \(C_r\): \(r\)-th common coin
- Go to iteration \(r+1\)
Ben-Or ABA Efficiency

• With a common coin, want to argue: with probability $\geq \frac{1}{2}$, coin = non-\bot GA output
 – At most one non-\bot GA output

• Hence, decide in expected 2 iterations !?

• Turns out it’s not so simple
Ben-Or ABA Liveness

• Let us take a closer look at the protocol

Iteration r:
- \((y_r, g_r) \leftarrow GA_r(x_j)\) // 2-round GA
- If \(g_r == 1\), then decide \(y_r\);
 Else \(x_j \leftarrow y_r \neq \bot\) or \(C_r\) // \(C_r\): r-th common coin
- Go to iteration \(r+1\)

• Claim: \(Pr[C_r = y_r] = 1/2\)
 – Implicit assumption: \(y_r\) is independent of \(C_r\)
 – The adversarial network can manipulate message delivery order to make sure \(y_r \neq C_r\)
Ben-Or ABA Protocol (n=3, f=1)

- Party j has input x_j. Will keep updating x_j

 Iteration r:
 - Round 1: party j sends $(r, \text{vote1}, x_j)$
 - Wait for $n-f = 2$ such msgs

 - Round 2: if all $n-f=2$ vote1 are for the same x, party j sends $(r, \text{vote2}, x)$; else, sends $(r, \text{vote2}, ?)$
 - Wait for $n-f = 2$ such msgs

 - If all $n-f=2$ vote2 are for the same x, then decide x;
 Else if there is one vote2 for x, then set $x_j = x$;
 Else, set x_j to 0 or 1 randomly. Go to iteration $r+1$.
Ben-Or ABA Liveness

- Ben-Or ABA not live if using common coin
 - Initially: \(0\) \(1\) \(v\)
 - \(GA_1:\) \(\perp\) \(1-C_1\) \(1-C_1\) \(1-C_1\) if \(C_1 = C_2\) \(\perp\) if \(C_1 \neq C_2\)
 - Adopt: \(C_1\) \(1-C_1\) \(1-C_2\)
 - \(GA_2:\) \(\perp\) \(1-C_2\)
 - Adopt: \(C_2\) \(1-C_2\)

- With prob \(\frac{1}{2}\), an adversarial network can create an infinite run
 - Need \(1-C_1 = v\)
Ben-Or ABA Liveness

• Ben-Or ABA not live if using common coin

• Miraculously, it is live with local coins, but very inefficient and requires a complex proof

• Can we make Ben-Or work for common coin?
 – Yes! [Abraham-BenDavid-Yandamuri, 2022]
 – Idea: prevent manipulation of GA outputs after any party outputs from GA
Need Additional Property in GA

• Liveness: everyone outputs
• Validity: same inputs $x \rightarrow$ all output $(x, 1)$

• Two safety:
 – $S2$: One outputs $(y, 1)$, all output $(y, *)$
 – $S3$: No $(y, *)$ and $(y', *)$ for $y \neq y', y \neq \bot, y' \neq \bot$

• Binding: once a party outputs, all parties can only output $(\bot, *)$ or $(y, *)$ (for some $y \in \{0, 1\}$)
 – “\bot/y-valent” as opposed to “tri-valent”
GA with Binding

• Party j has input x_j:
 – Round 1: party j sends $(vote_1, x_j)$
 • Wait for n-f vote1 msgs
 – Round 2: if all n-f vote1 are for the same x, party j sends $(vote_2, x)$; else, sends $(vote_2, ⊥)$
 • Wait for n-f vote2 msgs
 – Round 3: if all n-f vote2 are for the same x, party j sends $(vote_3, x)$; else, sends $(vote_3, ⊥)$
 • Wait for n-f vote3 msgs
 – If all n-f vote3 are for the same x, then output $(x, 1)$; Else if there is one vote3 for x, then output $(x, 0)$; Else, output $(⊥, 0)$.
GA with Binding

• Liveness, validity proofs similar as before

• Safety: quorum intersection → at most one non-⊥ vote2 and vote3 → both S2 and S3

• Binding: once a party outputs, all parties can only output (⊥, *) or (y, *) (for some y ∈ {0,1})
 – Consider the first time some party sends vote3
 • This is before any party outputs
 – Consider the n-f vote2 received by this party
 – If one has v ≠ ⊥ → no other non-⊥ vote2 → binding
 – If n-f (vote2, ⊥) → everyone receives a (vote2, ⊥) → everyone sends (vote3, ⊥) → binding (only ⊥)
Modern Ben-Or ABA Correctness

• Liveness:
 – Possible outcomes: all $ (coin), 0 and $, or 1 and $
 • By the time coin is revealed, the outcome for this iteration is already fixed (GA binding)
 – If all coins == adopted value (if any), then all parties start with same value and decide in next iteration
 • 2^{-n} prob with local coin, $\frac{1}{2}$ prob with common coin
Modern Ben-Or ABA Efficiency

• In expectation, $O(2^n)$ iterations with local coins and $O(1)$ iterations with common coin

• Rounds: $O(1)$ times expected # of iteration

• Communication complexity: $O(n^2)$ times expected # of iteration
Summary

• Ben-Or protocol: randomized asynchronous binary agreement tolerating $f < \frac{n}{2}$ crash

• Randomization circumvents FLP

• Also circumvents $f+1$ round lower bound