
Advanced Algorithms
Lecture 14: Randomness in algorithm design

Announcements

• Mid-term grades out

• HW 3 due Wednesday (tomorrow)

Last two weeks

• Basic graph algorithms

• Dijkstra’s algorithm (O(m+n) log n) time — imitation of BFS

• DP based, “Bellman-Ford” algorithm — O(n (m+n)) time

• “Definitions” of flows and cuts in graphs

Maximum flow

Problem: given a (directed) graph G = (V, E) with edge capacities (>
0), source u, sink v, find the max possible “rate” at which one can send

“information” from u to v.

communication networks, shipping goods, …

Min cut problem

Problem: given a (directed) graph G = (V, E) with edge costs (> 0),
source u, sink v, find the min possible set of edges to “cut” so that

there’s no path from u —> v

Blowing bridges…

• Undirected graphs

• Image segmentation

Flows and cuts

Theorem (easy): G = (V, E) be a weighted directed graph, and u, v be
vertices. Let “F” be any flow, interpreting wts as capacities. Let “C” be

any cut, interpreting wts as costs. Then F <= C.

Comments

• Max-flow min-cut theorem

• Many applications — e.g., no bottleneck => many edge disjoint
paths

• Algorithms for cut == algorithms for flow

Today

Can randomness help in algorithm design?

Toy problem

• Generalization of HW problem

Problem: given an (unsorted) array A[0], A[1], …, A[n-1], and the
promise that at least n/3 of the A[i] are 0, find one index i s.t. A[i]=0

Randomized procedure

Key trade-off

• Higher running time, higher probability of success

• Note: don’t even read entire input!

“Las Vegas” algorithm

• While not found: pick random index i and check if A[i]=0

Expected Running Time (similar to tossing until seeing heads)

Running time is a random variable

Example 2 — checking identities

• What if we simply plug in a random integer x in interval [1,20]?

One variable identities

General theorem: Schwartz-Zipfel Lemma

Example 3 — primality

Problem: given an integer X = a1a2 … an, find if X is prime

• Classic problem in math/CS

• Can an algorithm run in time poly(n)?

• Miller-Rabin test

Example 4 — perfect matching

Problem: given a bipartite graph G, find if it has a “perfect matching”

• Claim: this reduces to identity testing!

Perfect matching

Examples so far

• Finding hay in a hay stack

• Trade-off between running time and success probability

• (Fairly general) — “boosting”

Randomized algorithms
overview

• Data is given, algorithm is randomized (unlike sampling/“ML”
analyses)

• Usually concerned about expected behavior, behavior “with high
probability”

Next few lectures: general ideas, applications, analysis…

