Lecture 9-10: Fault Bounds of Consensus

CS 539 / ECE 526

Distributed Algorithms
Today: Fault Bounds

• How many faults can we tolerate?
• Highly sensitive to various conditions
• All the fault bounds in this lecture are tight
Outline

• Fault bounds in synchrony
 – Byzantine agreement
 – Byzantine without signatures
 – Total-order broadcast and Replication

• Fault bounds in asynchrony
 – Broadcast
 – All other problems (FLP impossibility)

• Partial synchrony
 – Crash
 – Byzantine
Fault Bounds So Far

• Synchronous crash broadcast: $f < n$ (flooding)

• Synchronous Byzantine broadcast with signatures: $f < n$ [Dolev-Strong, 1983]

• How about Agreement?

• How about without signature?

• How about asynchrony?
Recall Agreement

• n parties, each has an input x_i, up to f faulty

• Safety: no different outputs

• Liveness: everyone outputs

• Validity: every honest inputs $x \rightarrow$ every honest outputs x
Recall Agreement Validity

• Every honest inputs \(x \) \(\rightarrow \) every honest outputs \(x \)

• Some examples: what should the output be given following inputs?
 – Binary inputs: 1, 1, 1, 1, 1?
 • Must be 1
 – Binary inputs: 0, 1, 1, 0, 1?
 • Must be 1 if both 0s are Byzantine inputs
 • Otherwise, either 0 or 1
 – Multi-value inputs: 3, 3, 5, 2, 3, 3, 3?
 • Must be 3 if 5 and 2 are Byzantine inputs
 • Otherwise, anything is fine
Recall Agreement Validity

• Every honest inputs $x \rightarrow$ every honest outputs x
 – Not meant to be useful
 – Just an easy condition to rule out trivial solutions

• Why don’t we define a more useful validity?

• Turns out it may make the problem too hard
 (problem set 2)
Broadcast to Agreement

- Byzantine broadcast (BB) gives BA if $f < n/2$
 - Every party invokes BB on its input
 - Every party gets an agreed upon vector
 - Byzantine \rightarrow Any value in that position of vector
 - Everyone picks the most frequent value
 - $f < n/2$ needed for validity of Byzantine agreement
Broadcast to Agreement

• Safety: same vector, same way to pick

• Liveness: obvious

• Validity: if all honest have same input x, then x will be the most frequent (since $f < n/2$)

• Round complexity: same as BB

• Communication complexity: n times BB
Byzantine Agreement Fault Bound

• Byzantine agreement is not solvable if $f \geq n/2$
 – Proof: Divide parties into two groups P and Q such that $|P| \leq f$ and $|Q| \leq f$
 – Scenario I: P are honest and receive input v; Q are Byzantine and behave as if they receive input v'
 • P commits v due to validity
Byzantine Agreement Fault Bound

• Byzantine agreement is not solvable if \(f \geq n/2 \)

 – Proof: Two groups \(|P| \leq f\) and \(|Q| \leq f\)

 – Scenario I: P honest & receive \(v \), Q Byzantine & receive \(v' \) → P commit \(v \) due to validity

 – Scenario II: Q honest & receive \(v' \), P Byzantine & receive \(v \) → Q commit \(v' \) due to validity

 – Scenario III: P receive \(v \), Q receive \(v' \), both honest
 • P cannot distinguish III from I & commit \(v \)
 • Q cannot distinguish III from II & commit \(v' \)
Broadcast to Agreement

• Crash tolerant agreement for $f < n$ with a modification to validity
 – Every party invokes broadcast on its input
 – Every party gets an agreed upon vector
 • Crash \rightarrow possibly \perp in that position of vector
 – Everyone picks the most frequent non-\perp value
Broadcast to Agreement

• Problem with standard validity when $f \geq n/2$
 – Example: inputs 0, 0, 0, 1, 1, 1. How to pick in a tie?
 – Pick 0? What if all three parties with input 0 crash right before they output?
 • All three non-faulty have input 1, must output 1
 • Symmetric problem for picking 1

• Modified validity: if all n parties input x, all non-faulty parties output x
Broadcast to Agreement

- Safety: same vector, same way to pick
- Liveness: obvious
- Validity: all n parties input $x \rightarrow$ agreed-upon vector has only x and $\perp \rightarrow$ all pick x (non-\perp)

- Round complexity: same as broadcast
- Communication complexity: n times broadcast
Fault Bound without Signatures

• BA or BB without signatures: \(f < \frac{n}{3} \)

[Lamport-Shostak-Pease, 1982]
Fault Bound without Signatures

• BA or BB without signatures: \(f < \frac{n}{3} \)

• Previous argument was handwavy
 – We are trying to prove \textit{No} algorithm works
 – Cannot assume how the protocol works

• Rigorous proof next [Fischer-Lynch-Merritt, 1986]
 – Step 1: no BA solution for \(n = 3, f = 1 \)
 – Step 2: generalize to any \(n \leq 3f \)
Fischer-Lynch-Merritt Proof

• Suppose for contradiction that there exists an algorithm that solves BA with $n = 3, f = 1$
Fischer-Lynch-Merritt Proof

• Connect six non-faulty processes in a ring, let them run the algorithm, and feed them inputs as in the figure

```
A 1 0 0 1
B 1 1 1 1
C 0 0 0 0
```
Fischer-Lynch-Merritt Proof
Fischer-Lynch-Merritt Proof
Fischer-Lynch-Merritt Proof

or 0?
Fischer-Lynch-Merritt Proof

• No algorithm solves BA with $n = 3$, $f = 1$
• Now generalize to any $n \leq 3f$
• Suppose for contradiction that a magic algo solves BA for some n and f where $n \leq 3f$
• We can use it to solve 1-fault-out-of-3 BA
Fischer-Lynch-Merritt Proof

• Use f-out-of-n BA algo to solve 1-out-of-3 BA
 – Each of the three parties simulates $\leq f$ parties so that the total number of parties is n
 • 1 fault out of 3 $\rightarrow \leq f$ faults out of n
 – Run magic algo, 1-fault-out-of-3 BA solved
 – Contradiction, QED

• Where does the proof break down if using signatures?
Fault Bounds So Far

• Crash broadcast and agreement: $f < n$
• Byzantine broadcast (BB) with signatures: $f < n$
• Byzantine agreement (BA): $f < n/2$
• BA or BB without signatures: $f < n/3$

• Now moving on to more practical problems
Broadcast to Replication

• Broadcast gives replication

• Idea: Parties take turns to broadcast values
 – Crashed broadcaster \rightarrow possibly \perp in that position
 – Byzantine broadcaster \rightarrow possibly invalid value
 – Everyone agrees on those, can simply discard

• This achieves Total-Order Broadcast
Total-Order (Atomic) Broadcast

• Parties propose values, and agree on a sequence of values

• Safety: no different values at every position in the sequence

• Liveness: every proposed value eventually added to the sequence

• Validity not needed (no trivial solution)
TO Broadcast vs. Replication

• TO broadcast: parties propose values, and agree on a sequence of values
 – Very close to replication, one subtlety remains

• Replication needs to serve external clients, not just reach consensus among servers
 – Clients do not see inner-working of the protocol
Replication

- **External clients** propose values (to servers) and **external clients** agree on a sequence of values.
Replication

- **External clients** propose values (to servers) and **external clients** agree on a sequence of values

- Safety: no different values at every position in the sequence

- Liveness: every proposed value eventually added to the sequence

- Validity: external (application level)
Replication

• Clients send values to servers; servers run a total-order broadcast and reply to clients
 – Problem solved for crash faults
 – Byzantine server can send a fake reply
 • Solution: require same reply from f+1 servers
Replication Fault Bound

• Byzantine fault tolerant replication requires same reply from \(f+1 \) replicas

• Need \(n > 2f \) so that honest > Byzantine

• Byzantine replication impossible if \(f \geq n/2 \)

 – Two groups \(|P| \leq f \) and \(|Q| \leq f \) present different views

 – Client don’t know who to believe

• Cannot distinguish the \(f \) Byzantine servers from the (up to) \(f \) honest servers
Fault Bounds for Synchrony

- Crash: $f < n$ (ignore agreement)
- Byzantine without signatures: $f < n/3$
- Byzantine with signatures:
 - Broadcast and total-order broadcast: $f < n$
 - Agreement and replication: $f < n/2$
- Moving on to asynchrony
Recall Asynchrony

• Any message can take arbitrarily long
 – but will eventually arrive
 – (Asynchrony also says any local computation can be arbitrarily long. But can be lumped into msg delay.)

• Helpful to think of asynchrony as an adversarial network scheduler
Broadcast in Asynchrony

• Cannot tolerate a single crash (broadcaster)
 – Same proof as in async impossibility of synchronizer
 – No msg from broadcaster, what do we do?
FLP Impossibility

- Under asynchrony, no deterministic agreement protocol can tolerate a single crash fault [Fischer-Lynch-Patterson, 1985]

- Recall configuration and valency
 - Step 1: there exists an initial bivalent config
 - Step 2: can always stay bivalent
Recall Configurations

• Union of the states of all parties

• A protocol execution is an evolution of configurations: $C_0 \rightarrow C_1 \rightarrow C_2 \ldots$

• In synchrony, evolve after each round

• In asynchrony, evolve after each msg arrival
 – “Msg m arrives at party p” is called an “event”
More on Async Configurations

• \(C_0 \rightarrow_e C_1 \rightarrow_e' C_2 \)

• Apply events in what order? Does it matter?

• Must apply \(e \) before \(e' \) if \(e \) happens before \(e' \)
 – Type 1: two events with the same recipients
 – Type 2: one event “triggers” another

• Otherwise, apply in either order, same outcome
 – \(C \rightarrow_e C_1 \rightarrow_e' C_2 \) \hspace{1cm} \(C \rightarrow_{e'} C'_1 \rightarrow_e C_2 \)
Recall Valency

• A config C is 0-valent, if in all configs reachable from C, honest parties decide 0
 – No matter what happens from now on, decide 0

• A config C is 1-valent, if, all decide 1

• Univalent = 0-valent or 1-valent

• Bivalent = not univalent
FLP Impossibility Proof

• Step 1: there exists an initial bivalent config
 – Proved in round lower bound

• Step 2: can always stay bivalent
 – What do we have to prove exactly?
 – ∀ bivalent C, ∃ bivalent C’ such that C → C’ ?
A Warm-Up (Not Actual Proof)

• ∀ bivalent C, ∃ bivalent C’ such that C → C’
 – Suppose for contradiction all evolution of C univalent
 – ∃ e₀, e₁ s.t. C → e₀ C₀ (0-val) and C → e₁ C₁ (1-val)
 – If e₀ || e₁, then C → e₀ C₀ → e₁ C* == C → e₁ C₁ → e₀ C*
 • C* cannot be both 0-val and 1-val, contradiction
 – e₀ and e₁ could not have triggered one another if they both already exist (applicable to C)
 – e₀ and e₁ must have the same recipient p
A Warm-Up (Not Actual Proof)

• ∀ bivalent C, ∃ bivalent C’ such that C → C’

 – Suppose for contradiction all evolution of C univalent

 – ∃e₀, e₁ with the same recipient p such that

 C → e₀ C₀ (0-val) and C → e₁ C₁ (1-val)

 – Fate of system depends on which msg reaches p first

 • Must wait for p to tell us. What if p does not speak?

 • Can’t wait forever; Any decision could be wrong

 – Contradiction. C must have a bivalent evolution
FLP Impossibility Proof

• Step 1: there exists an initial bivalent config

• Step 2: can always stay bivalent
 – What do we have to prove exactly?
 – \forall bivalent C, \exists bivalent C' such that $C \rightarrow C'$?
 • Insufficient: may be delaying some events forever

• Actual Step 2: \forall bivalent C, $\forall e$ applicable to C, \exists bivalent C' such that $C \rightarrow \ldots \rightarrow_e C'$!
 – All msgs eventually delivered, still bivalent!
FLP Impossibility Proof

• ∀ bivalent C, ∀ e applicable to C, ∃ bivalent C’ such that C \rightarrow ... \rightarrow_e C’
 – S: set of configs reachable from C w/o applying e
 – T: set of configs by applying e to S
 – Want to prove T contains a bivalent config

• Proof:
 – Suppose for contradiction all configs in T univalent
 – Can find S_0 and S_1 \in S s.t. S_i \rightarrow_e is i-valent
 • Find 0-val A_0 reachable from C. If A_0 \in S, done;
 Else, trace back to the config before applying e
FLP Impossibility Proof

• \(\forall \) bivalent \(C \), \(\forall e \) applicable to \(C \), \(\exists \) bivalent \(C' \) such that \(C \rightarrow \ldots \rightarrow_e C' \)
 – \(S \): set of configs reachable from \(C \) w/o applying \(e \)
 – \(T \): set of configs by applying \(e \) to \(S \)
 – Suppose for contradiction all configs in \(T \) univalent
 – Can find \(S_0 \) and \(S_1 \in S \) s.t. \(S_i \rightarrow_e \) is i-valent
 – Can find neighboring \(S_0' \) and \(S_1' \in S \) s.t. \(S_0' \rightarrow_e \), \(S_1' \) and \(S_i' \rightarrow_e \) is i-valent
 • \(S \) is connected, such neighbors must exist
 – \(S_0' \rightarrow_e \) is 0-valent, \(S_0' \rightarrow_e \), \(S_1' \rightarrow_e \) is 1-valent
 – Rest of the proof same as warm-up
FLP Impossibility Proof

– $S_0' \rightarrow_e$ is 0-valent, $S_0' \rightarrow_{e'}$, $S_1' \rightarrow_e S^*$ is 1-valent

Rest same as warm-up:

– $e \# e'$, otherwise S^* is both 0-val and 1-val

– So e and e' have the same recipient p

– Fate depends on which msg arrives at p first

– What if we don’t hear from p?

– Can’t tell if p crashed or is just slow

– Can’t wait forever; Any decision could be wrong
FLP Impossibility

• FLP does not say asynchronous consensus is impossible! Randomized consensus possible.

• Where does the proof rely on “deterministic”?

• Does it mean every deterministic protocol ALWAYS fails under asynchrony?
 – No, just says it can fail, can also get lucky.
What can we do given FLP?

• Consider easier problems

• Randomization
 – asynchronous agreement, total order broadcast, and replication possible under randomization
 – Single-value broadcast still impossible

• Consider easier models (partial synchrony)
 – Single-value broadcast still impossible under psync
Partial Synchrony

• (Intuitively) The network is sometimes asynchronous and sometimes synchronous
 – Maintain safety during asynchronous periods
 – Achieve liveness during synchronous periods
Partial Synchrony

• (Formally) There exists an unknown Global Standardization Time (GST) after which the network becomes synchronous
 – Forever synchronous after GST???
 • Hope to capture “sufficiently long sync periods”
 – Unknown to whom?
 • Can be viewed as a game between protocol designer and the adversary
Psync Agreement Fault Bound

• Crash: $f < \frac{n}{2}$

 – Proof: Two groups $|P| \leq f$ and $|Q| \leq f$

 – Scenario I:

 – Scenario II:

 – Scenario III:
Psycopg Agreement Fault Bound

• Crash: $f < \frac{n}{2}$
 – Proof: Two groups $|P| \leq f$ and $|Q| \leq f$
 – Scenario I: P non-faulty & receive v, Q crash
 • P eventually commit v due to validity
 – Scenario II: Q non-faulty & receive v', P crash
 • Q eventually commit v' due to validity
 – Scenario III: Both non-faulty, P receive v, Q receive v'
 GST sufficiently large \Rightarrow Both think the other crashed
 • P commit v, Q commit v'
Psync Agreement Fault Bound

• Byzantine: $f < n/3$
 – Proof: Three groups $|P| \leq f$, $|Q| \leq f$, $|R| \leq f$
 – Scenario I:
 – Scenario II:
 – Scenario III:
Psync Agreement Fault Bound

• Byzantine: \(f < \frac{n}{3} \)
 – Proof: Three groups \(|P| \leq f, |Q| \leq f, |R| \leq f\)
 – Scenario I: P/R non-faulty & receive \(v \), Q crash
 • P eventually commit \(v \) due to validity
 – Scenario II: Q/R non-faulty & receive \(v' \), P crash
 • Q eventually commit \(v' \) due to validity
 – Scenario III: P non-faulty & receive \(v \), Q non-faulty & receive \(v' \), R Byzantine behave towards P like in I and towards Q like in II. GST sufficiently large.
 • P cannot distinguish from I, commit \(v \)
 • Q cannot distinguish from II, commit \(v' \)
Async and Psync Fault Bounds

• Agreement under partial synchrony
 – Crash: $f < \frac{n}{2}$
 – Byzantine: $f < \frac{n}{3}$ (nothing to do with signatures)

• Both bounds apply to async or randomized

• Both bounds apply to TO-bcast and replication
 – Standard (single-value) broadcast still cannot tolerant even a single crash!
Fault Bounds Summary

• Async deterministic: $f = 0$
 – Broadcast, agreement, total-order bcast, replication

• Psync or randomized async
 – Broadcast: $f = 0$
 – Agreement, total-order broadcast, or replication: crash: $f < n/2$, Byzantine: $f < n/3$

• Sync
 – Crash: $f < n$ for all four problems
 – Byzantine no signature: $f < n/3$ for all four problems
 – Byzantine with signature
 • $f < n$ for broadcast and total-order broadcast
 • $f < n/2$ for agreement and replication
Fault Bounds Better Summary

- Byzantine agreement: $f < n/2$
- Byzantine replication: $f < n/2$
- Byzantine no signature: $f < n/3$
- Async deterministic: $f = 0$
- Psync broadcast: $f = 0$
- Psync crash: $f < n/2$
- Psync Byzantine: $f < n/3$