Theorem. The following are equivalent (and define trees):

1. $G=(V,E)$ is connected and acyclic (no subgraph)
2. Every pair of vertices is connected by a unique path (no repeats)
3. G is connected and $|E|=|V|-1$
4. G is acyclic and $|E|=|V|-1$
5. G is acyclic and adding any new edge creates a cycle.

$|E|=5$
$|V|=4$

Proof. Show that $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 1$

$5 \rightarrow 1$. $1 \rightarrow 5$

$4 \rightarrow 1$ (Frobenius)
$1 \rightarrow 2$. Use contradiction

Let u,v be two vertices \rightarrow not connected, then G is not connected

Assume there is a path $u \rightarrow w \rightarrow v$

$1 \rightarrow 3, 4$. Use contradiction

Assume G is not connected

Let i be the largest number $s.t. x_i$ is in P_i as y_i. (if no such x_i, use w)

Then $(u, x_0, x_1, \ldots, x_i, y_i, y_{i+1}, \ldots, y_n, w)$ is a cycle.

$2 \rightarrow 3$. Strong induction on N

Base case - $1 \rightarrow 1$, obvious

Inductive step - Assume true if $1 \rightarrow k$

If $|V|=1+k$, let $u \in V$ and E be a $G=(V,E)$

In G, $u \rightarrow v$ must be disconnected, otherwise there would be a path from u to v in G.

Then G has two connected components $G \rightarrow G_1 \rightarrow G_2$

$G_1 \rightarrow (V_1, E_1)$
$G_2 \rightarrow (V_2, E_2)$

$G_1 \cup G_2$ satisfy 2, so $|E_1|+|V_1|+1$ for $i=1,2$

$E_1=\{E, \ldots, E_{n-1}\} \cup \{x_0, x_1, \ldots, x_n \}$
$|V_1|=|V|, |V_2|=|V|-1$

$5 \rightarrow 1$. Use contradiction. Assume G is not connected

In particular, $u \rightarrow v$ be two vertices not connected.

Adding (u,v) to E can not create a cycle. Contradicts 5.

$1 \rightarrow 5$. If we add (u,v) then is a path from u to v

$(u,v, x_0, x_1, \ldots, x_n, v)$. Adding (u,v) turns this into a cycle.

x_i is not in G. Then adding x_i to G must add an edge, (x_i, x_{i+1}) to G. (If $i=n$).