
Lecture 16: Markov's inequality, balls & bins  

Plan/outline  

Last class, we saw some examples of how to !nd the expected running time of randomized algorithms. Today's
goal is to understand: is this good enough? Also, we start looking at hashing, using a simple abstraction of
throwing balls into bins.

More on expected running time  

Recall that the expected running time is, by de!nition, the average running time over all the "random choices"
of the algorithm. Now, if the average running time is small, does it mean that when we run the algorithm, the
time taken will be small with "high" probability? A priori, this is not very clear, but we now see a simple
theorem that formalizes it.

Markov's inequality. Suppose  is a random variable that only takes non-negative values, and suppose its
expected value is . Then for any , we have 

The proof of Markov's inequality is very straightforward, in fact just one line, using the de!nition of the
expectation; we skip it here as one can !nd it easily online.

Intuitively, the inequality says that most of the time, a random variable is not much more than its expectation.
For instance, setting , we get that the probability that  is smaller than , or equivalently, 

.

So let us go back to the Quicksort example. We showed that the expected running time is . So Markov's
inequality tells us that with probability at least , the running time is at most .

Boosting probability. While the guarantee above is reasonable, ideally we would wish to have a much larger
success probability. If we were to use Markov's inequality, then if we want to say that the running time is 
with probability , we will have to pick , which is not great. But it turns out that by slightly
changing the procedure, we can get a much higher success probability; the idea is, suppose we run Quicksort,
and if it !nishes in time , we return the answer. Otherwise, we stop the process and retry. Now, suppose
we were to repeat this process.

Now, the probability of "success" in each iteration of the loop is at least  (by Markov's inequality). Thus the
probability that the running time exceeds  is at most , which drops exponentially with .

procedure ImpatientQuickSort(A):

  repeat forever:

    run QuickSort(A), killing the process after 8n log n steps

    if procedure finished, return output and exit



Thus for this new algorithm, if we want a success probability of , we simply have to pick , which
translates to , which is much better than the earlier bound.

Hashing  

The next topic we'll study is hashing. It is one of the most important tools in algorithm design, used often for
tasks like !nding if an object exists in a collection, or for obtaining "unique identi!ers" for complex objects, and
so on.

Abstractly, hashing is de!ned as follows: we have a universe  of "objects" (these could be strings of arbitrary
sizes, and so on), and the goal is to map them to a domain  which we call "hash values" which is typically
integers in some range (say ). The mapping is called a hash function that maps  to .

Hash functions in practice must have some nice properties; let  be the function. Then we would like:

1. Given an object , the hash value  must be computable pretty quickly.
2. The set of hash values must be relatively small (compared to )
3. If we hash a small subset  of elements of the universe using , we must not see too many "collisions"

(two elements  such that ).

Designing good hash functions is tricky. The most di"cult condition to satisfy is (3) above, because ideally, we
would like to have (3) for all . But this is impossible because once we !x a hash function and it satis!es (2),
i.e., , then there must be elements of  to which  elements map to. If a subset of this set
is chosen as , then all we have are collisions! Thus, in practice, we design hash functions that are "random
enough" that for "typical" , we do not have too many collisions with high probability.

Balls and bins  

In view of the technicalities above, it turns out to be nicer to analyze randomized hashing via a more ideal
process. This setting is often referred to as "balls and bins". Suppose we have  balls that are thrown randomly
and independently into  bins. We would like to understand di#erent properties about the distribution of the
balls into bins. For example,

What is the expected size of each bin?
Suppose . Then what is the expected number of bins with say precisely  balls?
Again assuming , what is the probability that some bin gets  balls?

By answering these questions, we will illustrate some of the basic tools in probabilistic analysis. The main thing
in these analyses is to de!ne appropriate random variables and expressing the quantity of interest in terms of
these variables.

One simple yet powerful tool in our analysis is the following, known as the linearity of expectation.

Theorem. (Linearity of expectation). Let  and  be any real-valued random variables. Then for any real
numbers , we have .



The proof of this is quite simple (and follows from the de!nitions), but this is a powerful tool: in many cases, by
expressing a random variable as a sum of other random variables, we can compute the expectation with much
less e#ort!

The key thing about the linearity of expectation is that it does not depend on  being independent, or
anything like that. It holds for any two real-valued random variables (and thus also for complex valued, vector
valued, etc.). In contrast, if we had the product of random variables, we have  only if 
and  are independent.

Expected size

The entire process is symmetric (no bin or ball is special), so let us answer the question for bin . Let  be the
random variable denoting the number of balls in bin . Say we want to compute it using the de!nition of the
expectation. Then we have .

Thus we have to compute the probability that . In other words, what is the probability that exactly 
of the balls fall into bin 1?

Now, if we are given  balls and we want all of them to go into bin , then the probability is precisely . If we
want precisely these  balls (and no others), then the probability is . (Because the given  balls
go into bin 1 and the rest should not go into bin 1).

The probability that exactly  balls fall into bin 1 is thus the sum over the term above over all possible choices
of the  balls. Given that there are  balls total, this number is . Thus, overall, we have

And now to compute , we must simply do the summation  and plug in the expression
above. Simplicity, of course, is in the eye of the beholder. At this point, one can't be blamed for asking if there's
an easier way.

Sums of random variables. let us try to solve the problem by simplifying . Let  be a binary (0/1 valued)
random variable that "indicates" if ball 1 went into bin 1, i.e., de!ne  to be  if ball 1 went to bin 1 and is 0
otherwise. Similarly, de!ne  as the indicator for ball 2 going into bin 1, and so on. So we have a random
variable for each of the  balls. By de!nition, we have . Note that this is an equality
between random variables, meaning that it always holds no matter what values the variables attain.

Now, taking the expectation and using linearity, we get  (call this (*)). The key observation is
now that since  is binary, computing the expectation is easy! In fact, it is exactly 

. This is a useful thing to remember for 0/1 random variables: the
expectation is exactly the probability that the variable equals .

In our case, what is ? It is the probability that ball  goes to bin  (by de!nition), which is exactly 
 (as there are  bins and the ball goes to a random bin). Plugging this into (*) above, we get .

Alternative approach. In class, an alternate (and elegant!) approach was also proposed: let us de!ne  to be
the number of bins that land up in bin . Then we always have the identity . Taking
the expectation on both sides and using linearity, we get . Since all the bins are identical in our
process,  are all identically distributed, and thus have the same expectation. Thus  for all .



Number of bins with 4 balls (when )

Let us now consider the second question we posed: when , what is the expected number of bins that get
exactly  balls?

Now if , the calculation above shows that the expected size of each bin is . So every bin, in expectation,
has  ball -- this does not mean that every bin has precisely one ball!

In fact, in the !rst computation we tried (where we wrote out ), we found the distribution of , the
number of balls landing in bin . So even if  is a somewhat large value, there is some non-zero (though
perhaps negligible) probability that  balls fall into bin .

Now, back to the question. As before, let us de!ne some random variables. Let  be the random variable of
interest: the number of bins that get precisely  balls.

This time, it is even harder than before to compute  by direct computation (where for each , we want to
!nd ). To see why, you are encouraged to try!

But we can use the "sum of simpler variables" approach from before. Let us write ,
where  is a 0/1 random variable that indicates if bin  received precisely  balls. From linearity of
expectation, we have . (Here, as before, the  are not independent random variables; but
linearity holds irrespective of that, as we discussed.)

Again, we have  (as  is a binary variable). Now,  means that bin  received
precisely  balls (by de!nition). What is the probability of this?

Recall that we computed this quantity before; in fact, we did this not just for  but for any  (when attempting
to compute the expected number of balls in a bin). Thus, plugging in  in that formula, we get 

Using  and simplifying, we get 

Assuming that  is large, it's a standard fact that , where  is the base of the natural logarithm.
Thus the second term on the RHS above is roughly . For large , the !rst term converges to , and thus
the overall probability that  is very close to . And this is the same computation for every 
.

Thus we have , implying that in expectation, about  bins receive precisely 4 balls. Note that
this is a reasonably large number -- a constant fraction of the bins.
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