1. \(f(x) = 6(2x^2 - 12x + 3) \).
 Since \(6 = \gcd(12, 72, 18) \) the content is 6.

 \[f(x) = 2 \cdot 3 \cdot (2x^2 - 12x + 3) \]
 The factors 2 and 3 are irreducible in \(\mathbb{Z} \) and in \(\mathbb{Z}[x] \). The factor \(2x^2 - 12x + 3 \) is also irreducible: if it were to split into 2 linear factors it would have its roots in \(\mathbb{Q} \). But the usual quadratic formula gives roots

 \[\frac{12 \pm \sqrt{144 - 24}}{4} = \frac{12 \pm \sqrt{120}}{4} = \frac{6 \pm \sqrt{30}}{2} \]
 which are not in \(\mathbb{Q} \).

2. Any \(x \in D \) by UFD assumption is a product \(q_1 \cdots q_s \) of irreducibles. But each \(q_i \) has the form \(q_i = pu_i \) with \(u_i \) a unit. Hence any \(x \) has the form \(p^s \cdot u \) where \(u = u_1 \cdots u_s \) is a unit.

 If \(I \subset D \) is an ideal, let \(n \) be the minimal value for which \(I \) has an element of the type \(x = p^n \cdot u \). Then \(I \) also has \(x \cdot u^{-1} = p^n \) and so \((p^n) \subset I \). If \(y \in I \setminus (p^n) \) then \(y = p^l \cdot v \) with \(v \) a unit and \(l < n \) (otherwise \(y \in (p^n) \)). But this contradicts minimality of \(n \). So \(I = (p^n) \).

3. If (i) failed then any two irreducibles in \(R \) would be associates. By previous problem, any ideal would be principal, and this contradicts the assumption (\(R \) is not a UFD).
ideal would be principal, and this contradicts the assumption (R is not a PID).

(ii) Let I be non-principal and $x^0 \in I$. Then $x= p_1 \cdots p_s$, a product of irreducibles. Let h be the largest product of primes $p_1 \cdots p_s$ such that h divides all nonzero elements of I. Then $I= hJ$ and J is still non-principal. In addition, no irreducible divides all elements of J (it would have to divide x and thus would be one of the p_i). Take a maximal M which contains J. If $M = (z)$ then z is not a unit so $z = q_1 \cdots q_t$ with q_i irreducible. Then q_1 divides all elements of M, hence all elements of J. Contradiction.

\[x^4 + 4y^4 = x^4 + 4x^2y^2 + 4y^4 - 4x^2y^2 = (x^2 + 2y^2)^2 - (2xy)^2 = (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy) \]

If $x^2 + 2y^2 + 2xy$ was reducible then substitution of $y=1$ would give reducible polynomial to, but $x^2 + 2x + 2$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein Criterion at $p=2$.

Consider a surjective ring homomorphism

\[\psi : D[x] \to D \]

\[f(x) \mapsto f(0) \]

By the First Isomorphism Theorem

\[D = \text{Im}(\psi) \cong D[x]/\text{Ker}(\psi). \]

Ker(ψ) is given by polynomials with zero constant term, i.e. Ker$(\psi) = (x)$.
So \(D[x]/(x) \cong D \).

Since \(D \) is a domain, \((x) \) must be prime. By assumption of the problem it will also be maximal. But then \(D[x]/(x) \) is a field, as required.

\(\circ \) If \(a \), \(b \), and any \(f \) such that \(a f, b f \) must satisfy \(f \).

If \(a = p_1^{a_1} \ldots p_s^{a_s} \) with \(p_1, p_2, \ldots, p_s \) non-associate (\(i \neq j \)) and irreducible and similarly \(b = q_1^{b_1} \ldots q_t^{b_t} \), then adding trivial factors \(p_i^{0} \) or \(q_i^{0} \) we can assume that \(s = t \) and each \(p_i \) is an associate of \(q_i \).

Then \(\text{lcm}(a, b) = \prod_{i=1}^{s} p_i^{\max(a_i, b_i)} \)

This is similar to \(\text{gcd}(a, b) = \prod_{i=1}^{s} p_i^{\min(a_i, b_i)} \)