Copy Mechanism,
Relation-Aware Self-Attention,
Hidden Markov Models
Review: Conditional Language Models

- Language model (LM) conditioning on $x = (x_1 \ldots x_T)$

$$p_\theta(y_1 \ldots y_{T'} | x) = \prod_{t'=1}^{T'+1} p_\theta(y_{t'} | x, y_{<t'})$$

- Learnable modules
 - **Encoder.** $\text{enc}_\theta : \mathcal{V}^T \rightarrow \mathbb{R}^{T \times d}$ contextualizes source token embeddings of x (e.g., BiLSTM, Transformer encoder)
 - **Decoder.** $\text{dec}_\theta : \mathbb{R}^{T \times d} \times \mathcal{V}^{t'-1} \rightarrow \mathbb{R}^V$ computes logits for next word given source encodings and target history via attention to source encodings (e.g., recurrent, Transformer decoder)

- Encoder-decoder/sequence-to-sequence (seq2seq): Train encoder & decoder jointly to optimize a function of

$$p_\theta(y_{t'} | x, y_{<t'}) = \text{softmax}_{y_{t'}}(\text{dec}_\theta(\text{enc}_\theta(x), y_{<t'}))$$
Review: Stepwise Cross-Attention

- Example: RNN decoder with input feeding

Learns to attend to right source positions, without supervision. Visualization for translating English to French (Bahdanau et al., 2016)

- Transformer decoder (Vaswani et al., 2017): No recurrent or convolutional layers, entirely based on attention with a position-shared feedforward
The Unknown Word Problem

- Target text may contain rare words like
 - Proper names: Lausanne, Cesar, Guillaume, ...
 - Numbers/values: 103, 95, 42, 3.141592, 3.141593, ...

- Decoder needs these in target vocab \mathcal{V} to generate at all!
 - Note target vocab may be distinct from source vocab \mathcal{V}_{src} in general (e.g., translation)

- Brute-force: Include all word types in \mathcal{V}? Not practical
 - By Zipf’s Law, most words will have extremely low probabilities
 - Never enough: Guilaumé? 3.141594? Not seen in training data

- Simple/naive approach: Threshold vocab by frequency
 - Keep top-k: (e.g., $k = 100000$) most frequent types in \mathcal{V} and replace all other types ("OOV") with special token $\langle \text{unk} \rangle$ in training
 - Problem: Model predicts $\langle \text{unk} \rangle$ at test time (e.g., “$\langle \text{unk} \rangle$ and $\langle \text{unk} \rangle$ have a blue car in $\langle \text{unk} \rangle$”).
 - Can be postprocessed, but can we do better?
Copy Mechanism

▶ Idea: Unknown target words likely to be copied from source sentence somewhere

▶ Example: translation (Gulcehre et al., 2016)

French: Guillaume et Cesar ont une voiture bleue à Lausanne.

English: Guillaume and Cesar have a blue car in Lausanne.

▶ Example: data-to-text generation (Wiseman et al., 2017)

<table>
<thead>
<tr>
<th>TEAM</th>
<th>WIN</th>
<th>LOSS</th>
<th>PTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>11</td>
<td>12</td>
<td>103</td>
</tr>
<tr>
<td>Hawk</td>
<td>7</td>
<td>15</td>
<td>95</td>
</tr>
</tbody>
</table>

The Atlanta Hawks defeated the Miami Heat, 103-95, at Philips Arena on Wednesday...

▶ Approaches: Data pre-processing, attention-based

▶ Non-copy approaches

▶ Subword tokenization (e.g., BPE): No “unknown” words, but sequences longer and may also benefit from copy mechanism

▶ Scaling softmax to accommodate bigger \(\mathcal{V} \) (e.g., hierarchical softmax, sampling-based methods)
Data Pre-Processing Approach (Luong et al., 2015)

- Original data: Apply an unsupervised aligner to get alignments
 - The ecotax portico in Pont-de-Buis
 - Le portique écotaxe de Pont-de-Buis

- Conventional pre-processing
 - The ⟨unk⟩ portico in ⟨unk⟩
 - Le ⟨unk⟩ ⟨unk⟩ de ⟨unk⟩

- Copyable Model pre-processing
 - The ⟨unk⟩₁ portico in ⟨unk⟩₂
 - Le ⟨unk⟩₀ ⟨unk⟩₁ de ⟨unk⟩₂

- Positional All Model pre-processing
 - The ⟨unk⟩ portico in ⟨unk⟩
 - Le \(p_0\) ⟨unk⟩ \(p_{-1}\) ⟨unk⟩ \(p_1\) de \(p_0\) ⟨unk⟩ \(p_{-1}\)

- Positional Unknown Model pre-processing
 - The ⟨unk⟩ portico in ⟨unk⟩
 - Le ⟨unk⟩₁ ⟨unk⟩₁ de ⟨unk⟩₁
Attention-Based Approaches

- Data pre-processing approach: Simple and effective (1-2 points improvement over strong NMT baselines)
- Limitations
 - Requires an external word aligner in the pipeline
 - Fixed-size window ((unk)_7 . . . (unk)_7), can’t handle copy from far away in source sequence
- Idea: Make the model learn *when* and *what* to copy without supervision, by attention
- Pointer networks *(Vinyals et al., 2015)*: Only what to copy
- CopyNet *(Gu et al., 2016)*: Both when and what to copy, applied on summarization
- Concurrent work by *Gulcehre et al., 2016*: Different modeling details, applied on both translation and summarization
- When to copy: Modeled by a “switching network” (learned jointly)
Conditional LM with a Copy Mechanism

- Single training example now consists of

\[
x = (x_1 \ldots x_T) \quad y = (y_1 \ldots y_{T'}) \quad z = (z_1 \ldots z_{T'})
\]

where \(z_{t'} \in \{0, 1\} \) is 1 iff \(y_{t'} \) is copied from \(x \)

- Assume for now that \(z \) is observed
 - Just decide to set \(z_{t'} = 1 \) if \(y_{t'} \) appears in \(x \) somewhere.

- Conditional LM with a copy mechanism

\[
p_\theta(y, z|x) = \prod_{t'=1}^{T'+1} p_\theta(y_{t'}, z_{t'}|x, y_{<t'}, z_{<t'})
\]

- Further decomposition by the chain rule

\[
p_\theta(y_{t}, z_{t'}|x, y_{<t'}, z_{<t'}) = p_\theta(z_{t'}|x, y_{<t'}, z_{<t'}) \times p_\theta(y_{t}|x, y_{<t'}, z_{<t'})
\]

“switching network”
Parameterization

- Switching network

\[p_\theta(1|x, y_{<t'}, z_{<t'}) = \sigma(f_\theta(x, y_{<t'}, z_{<t'})) \]
\[p_\theta(0|x, y_{<t'}, z_{<t'}) = 1 - \sigma(f_\theta(x, y_{<t'}, z_{<t'})) \]

\[f_\theta(x, y_{<t'}, z_{<t'}) \in \mathbb{R} \] computed from current state (e.g., \(h_t \) if RNN, current embedding if Transformer)

- If \(z_{t'} = 1 \), “dynamic LM” with vocab \(\{w \in x\} \)

\[p_\theta(y_{t'} = w|x, y_{<t'}, z_{<t'}) = \sum_{t=1: x_t = w}^{T} A_{t,t'}^\theta \]

attention from \(t' \)-th target to \(t \)-th source

- If \(z_{t'} = 0 \), vocab \(\mathcal{V} \)

\[p_\theta(y_{t'} = w|x, y_{<t'}, z_{<t'}) = p_\theta(y_{t'} = w|x, y_{<t'}) \]

usual next word probability
Supervised vs Unsupervised Loss

- **Supervised training:** Maximize \(\log p_\theta(y, z|x) \) in training data

 - **Inference:** At each step \(t' \), consider all

 \[
 p_\theta(w, 1|x, y_{<t'}, z_{<t'}) \quad \forall w \in V \\
 p_\theta(w, 0|x, y_{<t'}, z_{<t'}) \quad \forall w \in x
 \]

- **Unsupervised training:** Maximize \(\log p_\theta(y|x) \) in training data

 \[
p_\theta(y_{t'}|x, y_{<t'}) = \sum_{z \in \{0, 1\}} p_\theta(y_{t'}, z|x, y_{<t'})
 \]

 \[
 = \sigma (f_\theta(x, y_{<t'}, z_{<t'})) \left(\sum_{t=1: x_t=y_{t'}}^{T} A_{t,t'}^{\theta} \right) + (1 - \sigma (f_\theta(x, y_{<t'}, z_{<t'}))) p_\theta(y_{t'} = w|x, y_{<t'})
 \]

 Switching network \(f_\theta \) trained without supervision, inference remains the same
Illustration

Image credit: See et al. (2017)
Self-Attention as a Fully Connected Directed Graph

- Self-attention viewed as a fully connected directed graph
- Natural generalization: Incorporate edge types in the model

Example edge types: Relative positions, relation between table cells (e.g., cell-column, cell-row)
Relation-Aware Self-Attention (Shaw et al., 2018)

- Extra parameters in the multi-head attention module
 - \(b^K_\tau \in \mathbb{R}^{d/H} \) for every relation type \(\tau \)
 - \(b^V_\tau \in \mathbb{R}^{d/H} \) for every relation type \(\tau \)

- Self-attention weight from \(x_{t'} \) to \(x_t \) with relation \(\tau_{t',t} \) under head \(h \)

\[
l^{h}_{t',t} = \frac{q^h_{t'} \cdot (k^h_t + b^K_{\tau_{t',t}})}{d/H}
\]

Probabilities: \((\alpha_{t',1}^h \ldots \alpha_{t',T}^h) = \text{softmax}(l_{t',1}^h \ldots l_{t',T}^h) \)

- Answer value

\[
a^h_{t'} = \sum_{t=1}^{T} \alpha_{t,t'}^h \left(v^h_t + b^V_{\tau_{t',t}} \right)
\]

- Relation bias is shared across all heads. Efficient batch computation still possible by construction
Applications of Relation-Aware Self-Attention

- Relative position encoding (Shaw et al., 2018)
 - Original Transformer: Add constant (or learnable) absolute position embeddings at input vectors
 - Now: For some k (e.g., $k = 8$), use $2k + 1$ relation types representing local distances
 - Tokens beyond window clipped to k or $-k$
 - Can entirely replace additive position embeddings, even modest improvement
 - Value bias b^V found unnecessary given key bias b^T (for MT)
- Relation between tokens in structured input (Müller et al., 2019)
 - Task: question answering from a table (represented as a flat sequence of words)
 - Idea: Distinguish relations between table cells, row header, column header, question, etc.
Sequence Labeling/Tagging

- Switching gears, we’ll consider the sequence labeling (aka. tagging) problem.
- Task: Given sentence $x_1 \ldots x_T \in \mathcal{V}$, output a correct label sequence $y_1 \ldots y_T \in \mathcal{Y}$
- Many applications: part-of-speech tagging, named-entity recognition
- This is a **structured prediction** problem: Output space is \mathcal{Y}^T possible label sequences
- Why not just frame it as seq2seq?
 - Seq2seq needs a lot of data, and is typically very challenging to train well (lots of engineering efforts)
 - In contrast, we can exploit **conditional independence assumptions** to derive exact and effective algorithms
 - In tagging, exact inference called “Viterbi”, exact marginalization called “forward”. Both dynamic programming
Example: Part-Of-Speech (POS) Tagging

- **Task.** Given a sentence, output a sequence of POS tags.
- **Ambiguity.** A word can have many possible POS tags.

 \[
 \text{the/DT man/NN saw/VBD the/DT cut/NN} \\
 \text{the/DT saw/NN cut/VBD the/DT man/NN}
 \]

- **Evaluation.** Per-position accuracy (can consider others, like sentence-level accuracy)

- Definition of POS tags in Penn Treebank (English)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>coordinating conjunction</td>
<td>and, but, or</td>
<td>PDT</td>
<td>determiner</td>
<td>all, both</td>
</tr>
<tr>
<td>CD</td>
<td>cardinal number</td>
<td>one, two</td>
<td>POS</td>
<td>possessive ending</td>
<td>'s</td>
</tr>
<tr>
<td>DT</td>
<td>determiner</td>
<td>a, the</td>
<td>PRP</td>
<td>personal pronoun</td>
<td>I, you, he</td>
</tr>
<tr>
<td>EX</td>
<td>existential ‘there’</td>
<td>there</td>
<td>PRPS</td>
<td>possess. pronoun</td>
<td>one’s</td>
</tr>
<tr>
<td>FW</td>
<td>foreign word</td>
<td>mea culpa</td>
<td>RB</td>
<td>comparative</td>
<td>quickly</td>
</tr>
<tr>
<td>IN</td>
<td>preposition/ subordin conj</td>
<td>of, in, by</td>
<td>RBR</td>
<td>adverb</td>
<td>faster</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
<td>yellow</td>
<td>RBS</td>
<td>superlative</td>
<td>fastest</td>
</tr>
<tr>
<td>JJS</td>
<td>superlative adj</td>
<td>wildest</td>
<td>SYM</td>
<td>symbol</td>
<td>$</td>
</tr>
<tr>
<td>LS</td>
<td>list item marker</td>
<td>1, 2, One</td>
<td>TO</td>
<td>“to”</td>
<td>to</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
<td>can, should</td>
<td>UH</td>
<td>interjection</td>
<td>ah, oops</td>
</tr>
<tr>
<td>NN</td>
<td>sing or mass noun</td>
<td>llama</td>
<td>VB</td>
<td>verb base form</td>
<td>eat</td>
</tr>
<tr>
<td>NNS</td>
<td>noun, plural</td>
<td>llamas</td>
<td>VBD</td>
<td>verb past tense</td>
<td>ate</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, sing.</td>
<td>IBM</td>
<td>VBG</td>
<td>verb gerund</td>
<td>eating</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, pl.</td>
<td>Carolinas</td>
<td>VBN</td>
<td>verb past part.</td>
<td>eaten</td>
</tr>
</tbody>
</table>

(45 tags)

(Marcus et al., 1993)

Other definitions: universal tagset (12 tags, language agnostic)
Example: Named-Entity Recognition (NER)

▶ **Task.** Given a sentence, identify and label all spans that are “named entities”

... John Smith works at New York Times ...

▶ **Reduction to tagging.** “Linearize” labeled spans into a label sequence using “BIO” scheme

John/B-PER Smith/I-PER works/O at/O New/B-ORG York/I-ORG Times/I-ORG

Number of tagging labels: $2 \times \text{number of entity types} + 1$

CoNLL 2003 dataset, 4 entity types (PER, ORG, LOC, MISC)
NER Evaluation

- Most words are tagged as O (not an entity), so accuracy is meaningless (vacuously high by predicting O always)
- Better metric: precision/recall/F1
- Per-entity F1 score (harmonic mean of precision and recall)

\[F_1(e) = \frac{2p(e)r(e)}{p(e) + r(e)} \]
\[p(e) = \frac{tp(e)}{tp(e) + fp(e)} \times 100 \quad r(e) = \frac{tp(e)}{tp(e) + fn(e)} \times 100 \]

- Global F1 score: Single performance number

\[F_1 = \frac{2pr}{p + r} \]
\[p = \frac{tp}{tp + fp} \times 100 \quad r = \frac{tp}{tp + fn} \times 100 \]
Generative Probabilistic Tagger

- Model defines a joint distribution $p_\theta(x_1 \ldots x_T, y_1 \ldots y_T)$ over any pairs of sentence and a label sequence.
 - Can generate $x_1 \ldots x_T$, although we will not use the tagger for generation
- By the chain rule

\[
p_\theta(x_1 \ldots x_T, y_1 \ldots y_T) = p_\theta(y_1|y_0) \times p_\theta(x_1|y_0, y_1) \times p_\theta(y_2|x_1, y_0, y_1) \times p_\theta(x_2|x_1, y_0, y_1, y_2) \\
\cdots \times p_\theta(y_T|x_<T, y_<T) \times p_\theta(x_T|x_<T, y_<T) \times p_\theta(y_*|x_\leq T, y_\leq T)
\]

Thus only need to model transition probabilities $p_\theta(y_t|x_<t, y_<t)$ and emission probabilities $p_\theta(x_t|x_<t, y_<t)$
Marginalization and Inference

- Two central calculations in structured prediction
- **Marginalization.** What is the *marginal* probability of $x_1 \ldots x_T$ under the model?

\[
\sum_{y_1 \ldots y_T \in \mathcal{Y}^T} p_\theta(x_1 \ldots x_T, y_1 \ldots y_T)
\]

- **Inference.** Given $x_1 \ldots x_T$, what is the most probable $y_1 \ldots y_T \in \mathcal{Y}^T$ under the model?

\[
\arg \max_{y_1 \ldots y_T \in \mathcal{Y}^T} p_\theta(y_1 \ldots y_T \mid x_1 \ldots x_T)
= \arg \max_{y_1 \ldots y_T \in \mathcal{Y}^T} p_\theta(x_1 \ldots x_T, y_1 \ldots y_T)
\]

- Generally intractable, that is we must exhaustively enumerate $|\mathcal{Y}|^T$ tag sequences (exponential in length).
(First-Order) Markov Assumption

- We define the model as

 \[p_\theta(y_t|x<t, y<t) = p_\theta(y_t|x<t, y_{t-1}) \]

 \[p_\theta(x_t|x<t, y_{\leq t}) = p_\theta(x_t|x<t, y_t) \]

- Transition probability: Current label \textit{conditionally independent} of all past labels given only previous label.

- Emission probability: Current word \textit{conditionally independent} of all past labels given only current label.

- Is this a reasonable assumption for tagging? (Note that even if the assumption is false we can still use this model on any data.)

- But now marginalization and inference can be done exactly in time linear (rather than exponential) in sequence length.
Forward Algorithm for Exact Marginalization

- Now no need to consider all \(|\mathcal{Y}|^T\) candidates because of the Markov assumptions
- This is a dynamic programming (DP) algorithm. Given \(x_1 \ldots x_T\), the DP table we fill out is \(\pi \in \mathbb{R}^{T \times |\mathcal{Y}|}\) where

\[
\pi(t, y) = \sum_{y_1 \ldots y_t \in \mathcal{Y}^t: y_t = y} p_\theta(x_1 \ldots x_t, y_1 \ldots y_t)
\]

- Output \(\sum_{y \in \mathcal{Y}} \pi(T, y) \times p_\theta(y^* | x_{\leq T}, y)\) as the marginal probability of \(x_1 \ldots x_T\)
- We will see that computing each \(\pi(t, y)\) will only take \(O(|\mathcal{Y}|)\) time, hence the total runtime is \(O(T |\mathcal{Y}|^2)\).
- Base case is easy: Compute for all \(y \in \mathcal{Y}\)

\[
\pi(1, y) = p_\theta(y | y_0) \times p_\theta(x_1 | y)
\]
Forward Algorithm: Main Body \((t > 1)\)

\[
\pi(t, y') = \sum_{y \leq t: y_t = y'} p_\theta(x_{\leq t}, y_{\leq t})
\]

\[
= \sum_{y < t} p_\theta(x_{\leq t}, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x_{< t}, y_{< t}) \times p_\theta(x_t | x_{< t}, y_{< t}, y')
\]
Forward Algorithm: Main Body \((t > 1)\)

\[
\pi(t, y') = \sum_{y \leq t: \ y_t = y'} p_\theta(x \leq t, y \leq t)
\]

\[
= \sum_{y < t} p_\theta(x \leq t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y < t) \times p_\theta(x_t | x < t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y_{t-1}) \times p_\theta(x_t | x < t, y')
\]
Forward Algorithm: Main Body \((t > 1)\)

\[
\pi(t, y') = \sum_{y \leq t: y_t = y'} p_\theta(x \leq t, y \leq t)
\]

\[
= \sum_{y < t} p_\theta(x \leq t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y < t) \times p_\theta(x_t | x < t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y_{t-1}) \times p_\theta(x_t | x < t, y')
\]

\[
= \sum_{y} \sum_{y < t-1} p_\theta(x < t, y < t-1, y) \times p_\theta(y' | x < t, y) \times p_\theta(x_t | x < t, y')
\]
Forward Algorithm: Main Body \((t > 1)\)

\[
\pi(t, y') = \sum_{y \leq t: y_t = y'} p_\theta(x \leq t, y \leq t)
\]

\[
= \sum_{y < t} p_\theta(x \leq t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y < t) \times p_\theta(x_t | x < t, y < t, y')
\]

\[
= \sum_{y < t} p_\theta(x < t, y < t) \times p_\theta(y' | x < t, y_{t-1}) \times p_\theta(x_t | x < t, y')
\]

\[
= \sum_{y < t-1} p_\theta(x < t, y < t-1, y) \times p_\theta(y' | x < t, y) \times p_\theta(x_t | x < t, y')
\]

\[
= \sum_{y} \pi(t - 1, y) \times p_\theta(y' | x < t, y) \times p_\theta(x_t | x < t, y')
\]

\[
\text{already computed}
\]
Viterbi Algorithm for Exact Inference

- Same idea: No need to consider all $|\mathcal{Y}|^T$ candidates because of the Markov assumptions
- Given $x_1 \ldots x_T$, the DP table we fill out is $\pi \in \mathbb{R}^{T \times |\mathcal{Y}|}$ where

\[\pi(t, y) = \max_{y_1 \ldots y_t \in \mathcal{Y}^t: y_t = y} p_\theta(x_1 \ldots x_t, y_1 \ldots y_t) \]

- Exactly the same as forward if we switch sum with max

\[\pi(1, y) = p_\theta(y|y_0) \times p_\theta(x_1|y) \]
\[\pi(t, y') = \max_y \pi(t - 1, y) \times p_\theta(y'|x_{<t}, y) \times p_\theta(x_t|x_{<t}, y') \]

- But this only gives us the joint probability of $x_1 \ldots x_T$ and its most likely tag sequence. How do we extract the actual tag sequence?
Backtracking for Viterbi

- Keep an additional chart to record the path:

\[
\beta(t, y') = \arg \max_{y' \in Y} \pi(t - 1, y) \times p_\theta(y'|x_{<t}, y) \times p_\theta(x_t|x_{<t}, y')
\]

for \(t = 2 \ldots T \).

- After running Viterbi, we can “backtrack”

\[
y_T^* = \arg \max_{y \in Y} \pi(T, y) \times p_\theta(y_*|x_{\leq T}, y)
\]

\[
y_{T-1}^* = \beta(T, y_T^*)
\]

\[
\vdots
\]

\[
y_1^* = \beta(2, y_2^*)
\]

and return \(y_1^* \ldots y_T^* \).
In practice, we always operate in **log space** for numerical stability. The DP tables will store log probabilities, e.g., in forward:

\[
\pi(1, y) = \log p_\theta(y|y_0) + \log p_\theta(x_1|y)
\]

\[
\pi(t, y') = \text{logsumexp}_y \left(\pi(t - 1, y) + \log p_\theta(y'|x_{<t}, y) + \log p_\theta(x_t|x_{<t}, y') \right)
\]

where \(\text{logsumexp}_y f(y) = \log \sum_y \exp(f(y)) \) is the usual numerically stable calculation for log space.

Debugging. Debugging is crucial, the first DP implementation is almost certainly incorrect.

- Construct a small model randomly (e.g., with \(|\mathcal{Y}| = 5\))
- Generate a short sequence (e.g., \(x_1 \ldots x_7\)) and compute marginalization and inference exactly by **brute-force**
- Check if the output of forward/Viterbi matches with brute-force
The Hidden Markov Model

- Further Markov assumption on observation generation yields hidden Markov model (HMM)

\[p_\theta(y_t | x_{<t}, y_{<t}) = t_\theta(y_t | y_{t-1}) \]
\[p_\theta(x_t | x_{<t}, y_{\leq t}) = o_\theta(x_t | y_t) \]

- Simplest form of labeled sequence generation

\[p_\theta(x_1 \ldots x_T, y_1 \ldots y_T) = \prod_{t=1}^{T} t_\theta(y_t | y_{t-1}) \times o_\theta(x_t | y_t) \times t_\theta(y_* | y_T) \]

- Central model in NLP and machine learning: Tagging English text with a probabilistic model (Merialdo, 1994)

- Underlying tag sequence often unobserved (hence “hidden”)
Forward Algorithm for HMMs in Matrix Form

- Organize HMM probabilities in matrix form
 - Emission matrix: \(O \in \mathbb{R}^{|Y| \times |Y|} \) where \(O_{x,y} = o_\theta(x|y) \)
 - Transition matrix: \(T \in \mathbb{R}^{|Y| \times |Y|} \) where \(T_{y',y} = t_\theta(y'|y) \)

- Forward algorithm

\[
p_\theta(x_1 \ldots x_T) = \tau_\infty \sum_{y \in Y} \tau(t - 1, y) \times t_\theta(y'|y) \times o_\theta(x_t|y')
\]

\(O_x \in \mathbb{R}^{|Y|} \) is row \(x \) of \(O \), \([\tau_0]_y = t_\theta(y|y_0) \), \([\tau_\infty]_y = t_\theta(y_*|y) \)

- Compact/insightful view of stepwise marginalization in dynamic programming as matrix-matrix product
Learning HMMs

- **Supervised.** If $y_1 \ldots y_T$ observed, just maximize

$$\log p_\theta(x_1 \ldots x_T, y_1 \ldots y_T) = \sum_{t=1}^{T} \log t_\theta(y_t | y_{t-1}) + \log o_\theta(x_t | y_t)$$

Pre-neural: Parameters are *raw probabilities*, closed-form MLE by constrained optimization

$$t(y'|y) = \frac{\text{count}(y, y')}{\sum_{y' \in Y} \text{count}(y, y')} \quad o(x|y) = \frac{\text{count}(x, y)}{\sum_{x \in V} \text{count}(x, y)}$$

(i.e., “training” means counting word/tag bigrams off of labeled sequences). If parametric, can do gradient ascent

- **Unsupervised.** If $y_1 \ldots y_T$ unobserved, can still maximize *marginal* probability of $x_1 \ldots x_T$

$$\log p_\theta(x_1 \ldots x_T) = \log \sum_{y_1 \ldots y_T} p_\theta(x_1 \ldots x_T, y_1 \ldots y_T)$$

computable with forward alg.