EECS 336: Lecture 3: Introduction to Dynamic Programming
Algorithms

“divide problem into small number of subproblems and

Dynamic Programming Weighted TInterval ,q5iz0 solution to avoid redundant computation”

Scheduling

Reading: 6.0-6.3
Example: Weighted Interval Scheduling
Announcements:

e homework due Wednesday midnight input:

Last Time:
e njobs J={1,...,n}
o philosophy

. . o 5= i f job i
e computational tractability s = start time of job 4

o runtime analysis & big-oh e fi = finish time of job i

Today: e v; = value of job i

* Dynamic Programming (a derivation) compatibility constraint: Only one job can run at

o Weighted interval scheduling once.

output: Schedule S C J if compatible jobs with
maximum total value.

Find a First Decision

“make progress towards a solution”
Idea: job i is either in OPT(J) or not.
1. let J' = jobs compatible with ¢ in J.
2. let V = value of OPT if “i ¢ OPT(J)”
= OPT(J\ {i}).
3. let V' = value of OPT if “i € OPT(J)”
=v; + OPT(J")
4. return OPT(J) = max(V, V).
Note: subproblems: schedule J" and J\ {i}.

Recurrence: T'(n) =2T(n—1) +1

Result: runtime = # of subproblems x cost to com-
bine.

Challenge 2: could have too many subproblems.
(could be exponential!)

Solution: require “succinct description” of subprob-
lems.

Idea: for interval scheduling, process jobs in order of
start time so subproblems suffixes of order.

e sort jobs by increasing start time, s; < 59 < ... <

Sp-

o let next[i] denote job with earliest start time after
i finishes. (if none, set next[i] = n + 1.)

e subproblems when processing job 1:

— J' = {next[i],next[i] + 1, ...,n}

CRCNCRORCNCRORG

n levels - J\{l} = {2737...,71}
T(n) = 0O(2") o suffix {j,...,n} is succinctly described by “;”.
Challenge 1: redundant computation (only n subproblems)
Example:
) 5 Recursive Memoized Algorithm
|- |---1 Algorithm: Weighted Interval Scheduling:
| | 1. sort jobs by increasing start time.
9 2. initialize array next[i].
3. initialize OPT[i] = @ for all i.
{1.2,3}
AN 4. initialize OPT[n 4 1] = 0.
{2,3} {3} 5. compute OPT(1).
/ \ / \ Subroutine: OPT(i)
{3} o %) 1)
/ \ 1. if OPT[i] # @, return OPTJ¢].
%] %] 2. OPT[i] + max(v; + OPTnext[i]], OPT[i + 1]).

. ret PTlil.
Note: OPT({3}) called twice! 3. return OPT(i]

Solution: memoize.
Correctness
“when computing the value of a subproblem save the
answer to avoid computing it again” “OPT(4)” is correct (by induction on)

Runtime Analysis Key Ideas of Dynamic Programming

e n subproblems Subproblems must be:
e constant time to combine 1. succinet (only a polynomial number of them)
e initialization: sorting & precomputing ‘next’ ar- 2. efficiently combinable.

ray

3. depend on “smaller” subproblems (avoid infinite
Runtime: O(n)+ initialization = O(nlogn) loops), e.g.,

e process elements “once and for all”

Iterative DPs o “measure of progress/size.”

“fill in memoization table from bottom to top”
. Seven Part Approach
Algorithm: iterative weighted interval scheduling

1. OPT[n+1]=0 I. identify subproblem in English

2. for i =n down to 1: OPT(i) = “optimal schedule of {i,...,n}

OPTJi] = max(v; + OPT[next[i]], OPT[i + 1]). (sorted by starting time)
II. specify subproblem recurrence (argue correct-

ness)
Finding Optimal Schedule
OPT(#) = max(OPT(+ 1),v; +
“traverse memoization table to find schedule” OPT (next[i]))
Algorithm: schedule III. solve the original problem from subproblems
1. =1 Optimal Interval Schedule = OPT(1)
2. while i < n: IV. identify base case
if OPT[i + 1] < v; + OPT[next]d]]: OPT(n+1)=0
(a) schedule i. V. write iterative DP.
(b) i« next(i). VI. runtime analysis.
else: 7 <~ i+ 1. O(n) + initialization = O(nlogn)

VII. implement in your favorite language (Python!)

	EECS 336: Lecture 3: Introduction to Algorithms
	Dynamic Programming Weighted Interval Scheduling

	Dynamic Programming
	Example: Weighted Interval Scheduling
	Find a First Decision
	Recursive Memoized Algorithm
	Correctness
	Runtime Analysis
	Iterative DPs
	Finding Optimal Schedule
	Key Ideas of Dynamic Programming
	Seven Part Approach

