What can linear algebra say about graphs?

Def. Adjacency matrix A of a graph G(V,E) is a matrix A \in \mathbb{R}^{n \times n}.

\[(A)_{ij} = \begin{cases}
1 & \text{if } (v_i, v_j) \in E \\
0 & \text{otherwise}
\end{cases} \]

Dil. Let \(\lambda \) be an eigenvalue of \(A \).

Let \[x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \] be a corresponding eigenvector.

Then \[A x = \lambda x \]

Dil. All eigenvalues of a tree are real and negative.

Dil. Let \(T \) be a tree with \(n \) vertices.

\[A_T = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

\[A_T = \begin{bmatrix}
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{bmatrix}
\]

Any tree has \(n-1 \) negative eigenvalues and one zero eigenvalue.

Def. A matrix \(A \) is symmetric if \(A_{ij} = A_{ji} \) for all \(i, j \).

Dil. Let \(A \) be a symmetric matrix.

\[A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \cdots & A_{nn}
\end{bmatrix}
\]

Dil. Let \(G(V,E) \) be a regular graph.

Then, \((1, 1, \ldots, 1) \) is an eigenvector of \(A \) with eigenvalue \(n \), where \(n \) is the degree of each vertex.

Dil. Let \(A \) be an adjacency matrix, \((x_1, x_2, \ldots, x_n) \)

Then \((x_1, x_2, \ldots, x_n) \) is a normalized eigenvector of \(A \) with eigenvalue \(\lambda \).

Diagram:

- Graph G(V,E)
- Adjacency matrix A
- Eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \)

Conclusion:

If \(G(V,E) \) is a regular graph, then \((1, 1, \ldots, 1) \) is an eigenvector of \(A \) with eigenvalue \(n \), where \(n \) is the degree of each vertex.

Proof:

Let \(A \) be the adjacency matrix of \(G(V,E) \).

Then \((x_1, x_2, \ldots, x_n) \) is a normalized eigenvector of \(A \) with eigenvalue \(\lambda \).

Diagram:

- Graph G(V,E)
- Adjacency matrix A
- Eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \)

Conclusion:

If \(G(V,E) \) is a regular graph, then \((1, 1, \ldots, 1) \) is an eigenvector of \(A \) with eigenvalue \(n \), where \(n \) is the degree of each vertex.

Proof:

Let \(A \) be the adjacency matrix of \(G(V,E) \).

Then \((x_1, x_2, \ldots, x_n) \) is a normalized eigenvector of \(A \) with eigenvalue \(\lambda \).