Theorem. In a grid (m x n) where each cell contains a black or blue colored point, prove that if there are at least 3 black points per row and column, then there are at least 2 black points in the same row or column.

Proof. Let points (i, j), (i, k), and (k, j) be black for some i, j, k. Then by the pigeonhole principle, there exists a cell c in row i that contains at least one black point. Similarly, there exists a cell d in column j that contains at least one black point. Thus, there are at least 2 black points in the same row or column.

Theorem. 5 points in a 1x1 square, then each 2 points of distance less than $\frac{1}{2}$.

Proof. Divide 1x1 square into $\frac{1}{2}$ areas $\frac{1}{2}$

At most 4 points in 4 side. By pigeonhole principle, there exists a point in $\frac{1}{2}$

Then distance between 2 points is less than $\frac{1}{2}$

(by symmetry)

Theorem. $\lambda + \mu = \lambda' + \mu'$

Then both exist, $\lambda = \mu = \lambda'$

$\lambda, \mu, \lambda', \mu'$

Proof. λ and λ' are both squares, so $\lambda = \mu = \lambda'$

$\lambda + \lambda' = \lambda + \mu' = \mu'$

Now $\lambda + \lambda' = \mu'$

$\lambda + \lambda' = \lambda + \mu' = \lambda'$

$\lambda + \lambda' = \lambda + \mu'$

$\lambda + \lambda' = \lambda$