Lecture 17-18: Mutual Exclusion

CS 539 / ECE 526
Distributed Algorithms
Mutual Exclusion

• Process A
 non-critical section
 critical section
 remainder section
 repeat (possibly)

• Process B
 non-critical section
 critical section
 remainder section
 repeat (possibly)

• Examples:
 Delete p in link list
 Balance += 100
 Sell last seat to A
 Delete p’s parent
 Balance += 200
 Sell last seat to B
Outline

• Mutual exclusion problem definition

• Using strong primitives
 – Test-and-Set
 – Atomic queue and Read-Modify-Write

• Using shared registers
 – Using atomic registers: Peterson
 – Using safe registers: Bakery

• Fast Mutex
Mutual Exclusion (Mutex)

- Process A
 entry
 critical section
 exit
 remainder section
 repeat (possibly)

- Process B
 entry
 critical section
 exit
 remainder section
 repeat (possibly)

• Entry: request to enter critical section, coordinate with other threads
• Exit: clean-up work
An Easy Problem?

• Process A
 - Lock.lock()
 - critical section
 - Lock.unlock()
 - remainder section
 - repeat (possibly)

• Process B
 - Lock.lock()
 - critical section
 - Lock.unlock()
 - remainder section
 - repeat (possibly)

• Not a solution: have to solve the mutex problem to build a lock / semaphore
Mutual Exclusion [Dijkstra 1965]

• n processes may request exclusive right to enter **critical section**

• Safety (mutual exclusion): at most one process in critical section

• Liveness: no deadlock (next slide)

• Fairness: several variants (next slide)
Mutual Exclusion Fairness

- **Deadlock free**: if a process is in entry, eventually *some* process is in critical section
 - No fairness guarantee

- **Starvation free**: if a process is in entry, eventually *that* process is in critical section

- **Bounded waiting**: if a process is in entry, it is in critical section before a bounded number of times that other processes in critical section
Problem Definition Remark

• An implied requirement: the mutex algorithm is entirely implemented in entry & exit
 – Remainder (non-critical) section is unchanged app code

• Token ring and certain other practical algorithms disqualified
 – Cannot expect a process to participate in mutex if it is uninterested
Token Ring Algorithm

```plaintext
var token[n];          // initialized to {1, 0, 0, ... , 0}

// code for process i
while ( token[i] == 0 ) {no-op;}  // not my turn, wait

critical section;

token[i] = 0;
token[i+1] = 1;

remainder section

repeat (possibly)
```
Efficiency Metrics

• A mutex algorithm often infinitely spins on a register, so we will not focus on cost of computation or memory access

• Instead, we will focus on space complexity (e.g., number of registers used)
Outline

- Mutual exclusion problem definition
- Using strong primitives
 - Test-and-Set
 - Atomic queue and Read-Modify-Write
- Using shared registers
 - Using atomic registers: Peterson
 - Using safe registers: Bakery
- Fast Mutex
Test-and-Set

• A **test-and-set** variable V stores a binary value (0 or 1) and supports two (atomic) operations:

 \[
 \text{reset}(V): \quad \text{// set value to 0} \\
 V = 0
 \]

 \[
 \text{test\&set}(V): \quad \text{// set value to 1 and return old value} \\
 \text{tmp} = V \\
 V = 1 \\
 \text{return \ tmp}
 \]
Mutex using Test-and-Set

- Entry: repeat \(t = \text{test\&set}(V) \) until \(t == 0 \)

- Exit: \(\text{reset}(V) \)

- Intuition: when multiple processes compete, only one process wins (sees \(V=0 \))
Mutual Exclusion (Safety)

• Proof: Consider the first time mutual exclusion is violated: proc p_j enters Critical Section (CS) when proc p_i is already in CS

p_i enters CS:
sees $V = 0$,
sets V to 1

p_j enters CS:
sees $V = 0$, impossible!
sets V to 1

no process leaves CS
(because of first violation), so V stays 1
Deadlock Free (Liveness)

- Lemma: \(V = 0 \) iff no process in critical section
 - Successful entry \(\rightarrow \) Exit \(\rightarrow \) Successful entry \(\rightarrow \) Exit …
 - \(V: 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \) …

- Suppose deadlocks, process \(i \) in entry but no process enters CS ever after
 - Eventually, process in CS exits \(\rightarrow V = 0 \) (by Lemma)
 - Process \(i \) enters, contradiction

- How about starvation freedom? No.
Mutex using Atomic Queue

- **Entry:** enqueue(Q, i) // code for process I
 while (head(Q) != i) no-op;

- **Exit:** dequeue(Q)

- First-come-first-serve, best fairness possible
 - Satisfy starvation free and bounded waiting

- Atomic queue feels like a very strong primitive
Read-Modify-Write (RMW)

- Supports regular read
- Supports RMW(V, f): in one atomic step
 - Read current value
 - Compute certain function(s) of current value
 - Update value

\[
\text{tmp} = V; \\
V = f(V); \\
\text{return } V;
\]
Mutex using RMW

• \(V = (\text{head}, \text{tail}) \) // initially equal

• \(\text{enqueue}(V) = (V.\text{head}, V.\text{tail}+1) \)

• \(\text{dequeue}(V) = (V.\text{head}+1, V.\text{tail}) \)

• Entry: \(\text{pos} = \text{RMW}(V, \text{enqueue}) \)
 while \((V.\text{head} \neq \text{pos}.\text{tail}) \) no-op;

• Exit: \(\text{RMW}(V, \text{dequeue}) \)
Mutex using RMW Proof & Remark

• Mutual exclusion (safety) proof:
 – Each process has a unique pos.tail
 – Only the proc whose pos.tail == V.head can be in CS

• Liveness/fairness proof:
 – Bounded waiting: pos.tail – V.head

• Remark: did not actually implement a queue, since no data is stored; weaker primitive than atomic queue, available in real processors
Outline

• Mutual exclusion problem definition

• Using strong primitives
 – Test-and-Set
 – Atomic queue and Read-Modify-Write

• Using shared registers
 – Using atomic registers: Peterson
 – Using safe registers: Bakery

• Fast Mutex
Mutex using Atomic Registers

- Simplest mutex algorithm by Peterson in 1981
- For 2 procs only, can be extended to n procs
- Uses *three* atomic registers
 - Two single-writer two-reader: `want[]`
 - One two-writer two-reader: `turn`
Peterson Algorithm

- Process 0
 // entry
 want[0] = true
 turn = 1; // you go first
 while (turn == 1 && want[1] == true)
 no-op; // wait

 critical section

 // exit
 want[0] = false

- Process 1
 // entry
 want[1] = true
 turn = 0; // you go first
 while (turn == 0 && want[0] == true)
 no-op; // wait

 critical section

 // exit
 want[1] = false
Peterson Safety Proof

- Consider the first time mutual exclusion is violated: proc \(p_j \) enters Critical Section (CS) when proc \(p_i \) is already in CS
Peterson Fairness Proof

• Peterson lock achieves bounded waiting

• Proof: p_i stuck in entry only if it sees
 \[\text{want}[j] == \text{true} \land \land \text{turn} = j\]

• p_j enters or is already in CS, eventually exits

• p_j in entry again, sets turn = i

• p_i enters CS
Tournament Tree

- From 2-process mutex to n-process mutex
- Space complexity: $3(n-1)$ Boolean atomic registers
Bakery Algorithm

• Lamport, 1974
• Solves n-process mutex
• Uses $2n$ single-writer *safe* registers

• Intuition: each customer gets ticket in entry, smallest ticket gets served first
 – DMV algorithm may relate better for U.S.
Bakery Algorithm

var choosing[n], number[n]; // one per process, initialized to 0
// entry code for process i
choosing[i] = true;
number[i] = 1 + max(number[1], number[2], … number[n]);
choosing[i] = false;
for j = 1:n // wait for everyone who may come before me
 while (choosing[j]) no-op;
 while (number[j] != 0 && (number[j], j) < (number[i], i)) no-op;
end for
critical section;
number[i] = 0; // exit
Bakery Safety Proof

• Lemma 1: If p_i in CS, then $\text{number}[i] > 0$
 – Straightforward, no other process writes $\text{number}[i]$

• Lemma 2: If p_i in CS, then for all $j \neq i$, either $\text{number}[j] == 0$ or $(\text{number}[j], j) > (\text{number}[i], i)$
 – p_i saw the condition held
 – If p_i saw the latter was true, it will remain true until
 • p_j resets $\text{number}[j]$ to 0
 • Next time p_j chooses $\text{number}[j] > \text{number}[i]$
 – Can focus on the other case (next slide)
Bakery Safety Proof

• Lemma 2: If \(p_i \) in CS, then for all \(j \neq i \), either \(\text{number}[j] == 0 \) or \((\text{number}[j], j) > (\text{number}[i], i) \)

- \(p_i \) finishes choosing \(\text{number}[i] \)
- \(p_i \) sees \(\text{choosing}[j] = \text{false} \)
- \(p_i \) sees \(\text{number}[j] = 0 \)
- \(p_i \) enters CS

\(p_j \) sets \(\text{number}[j] > 0 \)

a stable 0
or
a transient 0
(overlapping write to safe register)
Bakery Safety Proof

- Lemma 2: If p_i in CS, then for all $j \neq i$, either $\text{number}[j] == 0$ or $(\text{number}[j], j) > (\text{number}[i], i)$

p_i finishes choosing number[i]
p_i sees choosing[j] = false
p_i sees number[j] = 0
p_i enters CS

p_j is in remainder
or
p_j is choosing a number

p_j sees number[i] and chooses number[j] > number[i]

p_j sets number[j] > 0

p_j choosing number[j] in one of these two windows
Bakery Safety Proof

• Lemma 1: If p_i in CS, then $\text{number}[i] > 0$
 – Straightforward, no other process writes $\text{number}[i]$

• Lemma 2: If p_i in CS, then for all $j \neq i$, either $\text{number}[j] == 0$ or $(\text{number}[j], j) > (\text{number}[i], i)$

• If p_i and p_j are both in CS, then $\text{number}[i]$ and $\text{number}[j]$ are both positive, and
 $(\text{number}[j], j) \succ (\text{number}[i], i)$
Bakery Fairness Proof

- Starvation freedom: eventually, every p_j with a smaller (number[j], j) enters and exits CS

- Bounded waiting: n
Bakery Algorithm Pros and Cons

• Use weak (single-writer, safe) registers
 – Historic significance: first mutex solution without assuming lower-level atomicity
 • Atomic ≈ mutex
 • Atomic register ≈ mutex for read/write
 • Exercise: where did Peterson rely on atomicity?
 – Modern view: atomic register expensive to build

• Infinite-sized variables number[]
 – Possible (but very hard) to avoid
 – Not an issue in practice
Outline

• Mutual exclusion problem definition

• Using strong primitives
 – Test-and-Set
 – Atomic queue and Read-Modify-Write

• Using shared registers
 – Using atomic registers: Peterson
 – Using safe registers: Bakery

• Fast Mutex
Fast Mutex [Lamport, 1987]

- In the two n-process mutex algorithms we’ve seen so far (tournament tree & bakery), a proc spends $O(\log n)$ or $O(n)$ time before entering CS even when there is no contention
Fast Mutex [Lamport, 1987]

• Fast mutex: $O(1)$ time if no contention

• Must use multi-writer registers
 – Each proc must leave some trace of entering CS
 – If each register has a single writer, must read n registers to make sure no process already in CS
Fast Mutex using Splitter

- Idea: fast-forward at most one process (to CS), other procs (if any) run n-proc mutex

- A splitter should guarantee
 - At most one winner
 - If a process runs alone, it wins
 - If there is contention, possibly no winner
Fast Mutex using Splitter

Splitter

lose

win

2-proc mutex

play role of p_0

play role of p_1

n-proc mutex

critical section

Borrowed from Jennifer Welch's slides of CSCE 668 at Texas A&M
```javascript
// two MRMW atomic register, re-initialize in exit
var door = "open", winner = -1;

// entry code for process i
winner = i
if (door == "closed") return "lose"
else
    door = "closed"
    if (winner == id) return "win"
    else return "lose"
```
Splitter Sample Execution

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>winner = 1</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>winner = 2</code></td>
<td></td>
</tr>
<tr>
<td><code>door == open</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>door == open</code></td>
<td></td>
</tr>
<tr>
<td><code>close door</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>door = closed</code></td>
<td></td>
</tr>
<tr>
<td><code>winner == 2</code> & <code>lose</code></td>
<td><code>winner == 2</code> & <code>win</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>winner = 3</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>door == closed</code> & <code>lose</code></td>
</tr>
</tbody>
</table>

Borrowed from Jennifer Welch's slides of CSCE 668 at Texas A&M
Splitter Proofs

• Liveness: if p_i executes alone, p_i wins
 – Can easily verify

• Safety: at most one process wins
 – Proof: let p_i be the last process to update `winner` before `door` is set to “closed”; no other p_j can win
 • p_j sees door closed \implies lose
 • p_j sees door open \implies p_j write winner before p_i \implies p_j sees a different winner once in the door \implies lose
Remarks

• Exit section must reset splitter

• Modular algorithm, can plug in any 2-proc and n-proc mutex algorithms
 – But if applied to Bakery, lose the advantage of using single-writer safe registers only

• Not adaptive: even if two processes contend, may have to run the expensive n-proc mutex
Mutual Exclusion Summary

• Basic problem in distributed computing

• Practical solutions: test-and-set, RMW

• Theoretically better solutions: Peterson, Tournament tree, Bakery, fast mutex