Lecture 6: State Machine Replication and Consensus

CS 539 / ECE 526
Distributed Algorithms
Outline

• Motivation and Model
• Difficulty with Link Failure
• Byzantine agreement and broadcast
(State Machine) Replication

• Consider any service
 – The server may fail

• Replicate the service
 – Need consensus
 – Despite some faulty servers

• Goal: provides an illusion of a single non-faulty server despite that some servers are faulty
(State Machine) Replication

• Goal: provides an illusion of a single non-faulty server despite that some servers are faulty

• More formally: all servers commit the same sequence of “values”
 – Will start with a simpler variant: agree on a single value
Types of Process Faults

• Crash: at some point the process stops executing
 – Msgs need to sent one at a time, so may stop after sending a subset of msgs in last (lockstep) round
 – But need not worry about stopping in the middle of sending a msg

• Invalid msgs can be detected and discarded
Types of Process Faults

• Crash: at some point the process stops executing

• Byzantine: arbitrary behavior, malicious
 – Hardest type of fault to deal with
Types of Process Faults

• Crash: at some point the process stops executing

• Byzantine: arbitrary behavior, malicious

• Other faults (that we will not focus on)
 – Fail-stop: notify other processes before crashing
 – Crash-recovery
 – Omission
“Right” Model for Replication?

- Traditionally:
 - Message passing
 - Asynchrony (or close to it)
 - Crash faults
 - Generic graph for theoretical interests, complete graph also reasonable with crash and async
 - Known set of participants
 - Reliable links
Some History

• Consensus problem introduced before 1980
• Lots of interests/progress in 1980s and 1990s
• Reduced interests in 2000s
 – Crash fault tolerance replication mostly solved (and sees wide adoption later)
 – Byzantine fault tolerance (BFT) no justification application
• … Until Nakamoto’s Bitcoin (2009) revived BFT with new applications: decentralized X/Y/Z …
 – Bitcoin assumes some degree of synchrony
 – Set of participants unknown or even changing
“Right” Model for Replication?

• Traditionally:
 – Message passing, asynchrony (or close to it), crash faults, generic or complete graph, reliable links, fixed and known participants

• More recently:
 – Synchrony, asynchrony, and more
 – Crash faults, Byzantine faults, and more
 – Unknown and changing participants
Timing Model

• Sufficient to focus on communication delay
 – Lump computation delay into communication delay

• Synchrony: delay upper bound Δ for every msg known to all parties
 – More ideal model: lockstep rounds

• Asynchrony: no upper bound on delay
 – Every message can take arbitrarily long but eventually arrives (reliable links)

• Partial synchrony: alternating periods of synchrony and asynchrony
Outline

• Motivation and Model
• Difficulty with Link Failure
• Byzantine agreement and broadcast
Two General Agreement Problem

• Two generals coordinate an attack
 – Both generals are honest
 – Messenger may be captured
Two General Agreement Problem

• Two honest generals each has an input
• The link between them may lose messages
• Desired outcome: two generals same output
• Safety: the two generals do not output different values
• Liveness: every general outputs a value
• Validity: If the two generals both input x, then they both output x
 – Needed to avoid trivial solutions
Two General Impossibility

• Surprisingly, not solvable deterministically

• Theorem: No deterministic algorithm can solve the two general problem with a lossy link
 – Even with lockstep synchrony and one-bit inputs

• In general, making the problem easier makes an impossibility result stronger
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
 – WLOG, can assume each general sends a msg every round (can send NoMsg)

• Consider its execution in which both generals input 1 and all msgs arrive
 – Both generals output 1 due to validity
 – Suppose this execution terminates after m rounds, call it E_{2m}

General 1

General 2
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})
• E_{2m-1}: last msg 1\rightarrow2 lost (lossy link)
 – Indistinguishable from E_{2m} to General 1
 – General 1 outputs 1 (in round m, and terminates)
 – General 2 outputs 1 due to safety
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})
• E_{2m-1}: last msg $1 \rightarrow 2$ lost (lossy link)
• E_{2m-2}: last msg $2 \rightarrow 1$ also lost (lossy link)
 – Indistinguishable from E_{2m-1} to General 2
 – General 2 outputs 1
 – General 1 outputs 1 due to safety

General 1
\[\begin{array}{cccccc}
1 & 2 & 3 & \cdots & m-1 & m \\
\end{array} \]

General 2
\[\begin{array}{cccccc}
\end{array} \]
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})
• E_{2m-1}: last msg 1→2 lost (lossy link)
• E_{2m-2}: last msg 2→1 also lost (lossy link)
• Remove msg one by one, each time one general cannot distinguish from previous exec

General 1

1 2 3 m-1 m

General 2

......
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})
• Remove msg one by one, each time one general cannot distinguish from previous exec
• E_0: both input 1, all msgs lost, both output 1
• E': general 2 inputs 0, all msgs lost
Two General Impossibility Proof

• Suppose for contradiction such an algo exists
• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})
• Remove msg one by one, each time one general cannot distinguish from previous exec
• E_0: both input 1, all msgs lost, both output 1
• E': general 2 inputs 0, all msgs lost
 – General 1 cannot distinguish from E_0, still outputs 1
 – General 2 has to output 1; otherwise safety violated
Two General Impossibility Proof

• Suppose for contradiction such an algo exists

• Consider its execution in which both generals input 1 and all msgs arrive (call it E_{2m})

• Remove msg one by one, each time one general cannot distinguish from previous exec

• E_0: both input 1, all msgs lost, both output 1

• E': general 2 inputs 0, all msgs lost, outputs 1

• E'': general 1 also inputs 0, all msgs lost
 – General 2 cannot distinguish from E', still outputs 1!
 – Validity violated! Contradiction. QED
Two General Impossibility

• Theorem: No deterministic algorithm can solve the two general problem with a lossy link
 – Even with lockstep synchrony and one-bit inputs
 – Where did the proof rely on deterministic?

• Randomization helps a little, not by much (will not go into this)

• Became a justification for reliable links
 – Lossy links too hard to solve?
Justification for Reliable Links

• But ... this is not sound reasoning

• When generalized to n honest generals, impossibility holds only if ALL links are lossy

• Fraction of lossy links overlooked, more research is needed
Justification for Reliable Links

- There is, however, a reasonable justification for assuming reliable links
- A process can keep re-sending until receiving an ack from recipient
- Turns a lossy link into a reliable async link!
 (From a practical perspective)
Outline

• Motivation and Model
• Difficulty with Link Failure
• Byzantine agreement and broadcast
Byzantine General’s Problem

- [Lamport, Shostak, and Pease 1982]
Byzantine Agreement Problem

• n generals, each has an input value
• Up to f of them can be traitors

• Desired outcome: every *honest* general outputs the same value
Byzantine Agreement Problem

- n generals, each has an input value
- Up to f of them can be traitors

- Safety: no two honest generals output different values
- Liveness: every honest general outputs a value
- Validity: if every honest general inputs x, then every honest general outputs x
 - Needed to avoid trivial solutions
Byzantine Agreement Problem

- n parties, each has an input x_i, up to f faulty

- Safety: no different outputs
- Liveness: everyone outputs
- Validity: every honest inputs $x \rightarrow$ everyone outputs x
Byzantine Broadcast Problem

- n generals, including a commander
- Commander has an input value x
- Up to f of them (including the commander) can be traitors

- Safety: no two honest generals output different values
- Liveness: every honest general outputs a value
- Validity: if the commander is honest, every honest general outputs x
Byzantine Broadcast Problem

- n parties, including a designated sender with an input x, up to f faulty

- Safety: no different outputs
- Liveness: everyone outputs
- Validity: sender honest \rightarrow everyone outputs x
Remarks

• Early papers are inconsistent in terminology! Check their actual definitions!

• Usually assume parties know n and f

• But parties do not know who are faulty
 – Otherwise problem is trivial

• Can a Byzantine party behave honestly?
 – Yes, by definition

• Is it still considered Byzantine?
 – Yes. There is no requirement on what they output.
Remarks on Validity

• Broadcast validity seems natural and useful
 – Sender honest \rightarrow output sender’s value

• Agreement validity … much less clear
 – Every honest inputs x \rightarrow every honest outputs x
 – Is this useful?
 – Let’s look at some examples first. What should the output be given following honest inputs?
 • Binary inputs: 1, 1, 1, 1, 1?
 • Binary inputs: 0, 1, 1, 0, 1?
 • Multi-value inputs: 3, 3, 5, 2, 3, 3, 3?
Remarks on Validity

• Broadcast validity seems natural and useful
 – Sender honest → output sender’s value

• Agreement validity … much less clear
 – Every honest inputs x → every honest outputs x
 – Is this useful?
 – Let’s look at some examples first. What should the output be given following honest inputs?
 • Binary inputs: 1, 1, 1, 1, 1? Must be 1
 • Binary inputs: 0, 1, 1, 0, 1? Either 0 or 1 is OK
 • Multi-value inputs: 3, 3, 5, 2, 3, 3, 3? Anything!
Remarks on Validity and Usefulness

• Broadcast validity seems natural and useful
• Agreement validity ... not really, only useful in very limited situations

• Meant to be a clean and easy problem
 – Easiest validity to forbid trivial solution
 – Value lies in the techniques, usually shed light on solving replication
 – Also valuable in impossibility proofs
Tolerating Faults is Hard!

• In general, when there are faults, we almost always study the consensus problem. Why?
 • Partly because it is the easiest problem!
 • But still quite hard! (and deceptively simple)

• Let us start from the simplest model
 – f crash faults out of n parties in total
 – Pair-wise reliable links, lockstep synchrony
 – Binary input: x is 0 or 1

• Try to come up with an algorithm!