In Strong Induction, the base case is not explicitly stated. Instead, the inductive step is used to establish the base case.

Theorem: For all integers $n \geq 1$, you can buy exactly n chicken nuggets.

Base Case: $n = 1$. You can buy exactly one chicken nugget.

Inductive Step: Assume $P(k)$ is true for some $k \geq 1$, then $P(k+1)$ is true.

Proof: Use Induction.

Base Case: $n = 2$.

Inductive Step: If you can buy n chicken nuggets, then you can buy $n+1$ chicken nuggets by buying one more nugget.

Corollary: For $n \geq 2$, there is a property $P(n)$ that is true if n is of the form $n = 2^k$ for some $k \geq 0$.

Puzzle: Given a set of numbers, determine if the sequence can be achieved by starting with a certain number and performing a specific operation repeatedly.

Invariant: The number of equal pairs in the sequence remains constant throughout the process.