Distributed Consensus

CS289

Distributed Consensus

Average Consensus

- The Average Height Problem
- The Equal Candy Problem

Distributed Consensus in “Real” Distributed Systems

- Estimation in distributed sensors (avg, median, product)
- Load-balancing in computer networks
- Natural Phenomena (diffusion, quorum-sensing)
- Synchronization (heartbeat, distributed antennas, wireless)
- Flocking and formation control (fish and birds, UAVs)
- Environmentally-adaptive robotic systems

Why recognizing “similarity” matters

Distributed robotics
- Formation control and coordination
 - In unmanned vehicles
 - Self-adapting modular robots

Natural Systems
- Collective Synchronization
 - Bird Flocking
 - Diffusion

Theoretical Advances
- Analyze correctness and performance (without knowing application details)
- Analyze for different and complex networks (e.g., time-varying networks)
- Techniques: Control theory, graph theory
Outline

• Part I
 – We will look at the distributed consensus problem from the readings, and go through the mathematical analysis.

• Part II
 – I will show how ideas from distributed consensus have been used recently to show analytically why/how synchronization and flocking work

How do we solve the Problem?

Problem:
 – Given a Graph G=(V,E) undirected, connected
 – Each node i in V has some initial value x(i)(0)
 – Each node i has some neighbors nbrs(i)
 – Nodes must cooperate to compute the average of initial values.

Answer:

intuition: look at how you differ from your local neighbors, and move in the right direction to reduce your disagreement...

\[x_i(t+1) = x_i(t) + \alpha \Delta x_i \]
where
\[\Delta x_i = \sum_{k=\text{nbrs}(i)} [x_k(t) - x_i(t)] \]
and
\[k = \text{nbrs}(i) \]

Notice that it’s NOT OBVIOUS that this locally greedy (myopic) should work...

Globally, we can see that the average is 7 (i.e. 28/4)

...But locally, for node C, its own value will first go down.

\[x_i(t+1) = x_i(t) + \alpha \Delta x_i \]
where
\[\Delta x_i = \sum_{k=\text{nbrs}(i)} [x_k(t) - x_i(t)] \]
and
\[k = \text{nbrs}(i) \]

Think of a line graph (continuous set of nodes) Information must travel, but it can also “slosh” around. How do we know it will ever settle?

In fact, requires \(\alpha < \frac{1}{d_{max}} \)
If \(\alpha = 1/2 \) or \(\alpha = 1/3 \), this example will work
Distributed Consensus

- $x_i(0) =$ initial value
- $x_i(t+1) = x_i(t) + \alpha \Delta x_i$

 where $\Delta x_i = \sum (x_k(t) - x_i(t))$ and $k = \text{nbrs}(i)$

Interesting Properties of this Algorithm
- Simple node behavior (Anonymous, leaderless, no params)
- Self-maintaining (provides inherent robustness)
- It works! (provably so if $\alpha < 1/d_{\text{max}}$)

Provably Correct
- Will converge to average, on any undirected connected graphs
- Time depends on (a) distance to answer (b) network topology

 How do we prove this?

Graph Laplacian

- From a local point of view (node)

 $x_i(t+1) = x_i(t) + \alpha \Delta x_i$

 $\Delta x_i = \sum (x_k(t) - x_i(t))$ where $k = \text{nbrs}(i)$

 $\Delta x_i = (\sum x_j(t) - N_i x_i(t))$ where $N_i =$ number of ners

- From a global point of view (state matrix)

In matrix form:

\[
\Delta X = -L X(t)
\]
Graph Laplacian

Turns out "L" is a famous matrix!!!

\[L = D - A \]

(Degree matrix - Adj matrix)

Definition: Spectral properties of a matrix A
eigenvalues (scalar) = \(v_1, v_2, v_3, \ldots, v_n \) (scalars)
eigenvectors (vector) = \(e_1, e_2, e_3, \ldots, e_n \)

For matrix A, \(A.e_1 = v_1.e_1 \) (eigen decomposition)

If G is a undirected connected graph, then for \(L(G) \):
\(v_1 = 0 \) and \(e_1 = [a \ a \ a \ a \ a \ldots] \) is unique
(For undirected/connected)
\(v_2 = \text{algebraic connectivity} \) and is > 0
(how "dense" the graph is)
the other \(v_s \) and \(e_s \) are also "magical"

\[\Delta X = -L X(t) \]

Back to Distributed Consensus

• From a local point of view (node)

\[x_i(t+1) = x_i(t) + \alpha \Delta x_i \]
\[\Delta x_i = \frac{1}{N_i} \sum_{j \in \text{nbrs}(i)} \left(x_j(t) - x_i(t) \right) \]
where \(\alpha \) = number of nrs

• From a global point of view (state matrix)

\[\begin{bmatrix}
\Delta x_0 \\
\Delta x_1 \\
\Delta x_2 \\
\Delta x_3
\end{bmatrix} =
\begin{bmatrix}
-0 & 1 & 1 & 0 \\
1 & -0 & 1 & 1 \\
1 & 1 & -0 & 2 \\
0 & 1 & 0 & -0
\end{bmatrix}
\begin{bmatrix}
x_0(t) \\
x_1(t) \\
x_2(t) \\
x_3(t)
\end{bmatrix} \]

Captures the decentralized process: \(\Delta X = -L X(t) \)

Proving the algorithm works

\[X(t+1) = X(t) + \alpha \Delta X \]

where \(\Delta X = -L X(t) \)

• Prove Correctness:
 – When it stops, the answer must be the average
 – It always stops, from any initial condition
Proving the algorithm works

\[X(t+1) = X(t) + \alpha \Delta X \]
where \(\Delta X = -LX(t) \)

- **Prove Correctness:**
 - When it stops, the answer must be the average
 - It always stops, from any initial condition

- **If G is undirected and connected**
 1. Consensus is a unique fixed point
 2. The Consensus is the average of initial values
 3. This is a stable fixed point

\[X(t+1) = X(t) + \alpha \Delta X \]
where \(\Delta X = -LX(t) \)

- **Prove Correctness:**
 - When it stops, the answer must be the average
 - It always stops, from any initial condition

- **If G is undirected and connected**
 1. Consensus is a unique fixed point
 - Stops when \(\Delta X = -LX(t) = 0 \)
 - As we saw earlier, \(v_1 = 0, e_1 = [a a a a a a a a a] \) (and \(v_2 > 0 \))
 2. The Consensus is the average of initial values
 3. This is a stable fixed point

\[X(t+1) = X(t) + \alpha \Delta X \]
where \(\Delta X = -LX(t) \)

- **Prove Correctness:**
 - When it stops, the answer must be the average
 - It always stops, from any initial condition

- **If G is undirected and connected**
 1. Consensus is a unique fixed point
 - Stops when \(\Delta X = -LX(t) = 0 \)
 - As we saw earlier, \(v_1 = 0, e_1 = [a a a a a a a a a] \) (and \(v_2 > 0 \))
 2. The Consensus is the average of initial values
 3. This is a stable fixed point

Proving Stability

Metric of “disagreement”
(at time t, what’s the system error?)

\[M(t) = \sum (x_i(t) - \text{avg})^2 \] sum of squared error

- **Prove that with each step, the dynamics of this system will cause this disagreement to be reduced**
 - At each step, I reduce the disagreement by a fraction that depends on topology...

\[M(t+1) <= M(t) - 2.v2.M(t) \]

- While initial convergence may be slow, reaction to perturbations is extremely fast!
Beyond Simple Consensus

Generalizable
• Directed graphs (strongly connected) [OS, T]
• Time-varying graphs [T, FL, OS]
• Gossip graphs [G]
• Distributed homeostasis (constraints) [F]
• Applications: Flocking, Synchronization, Vehicle formations, Sensor fusion, Self-adaptive robotic systems.

Citations
- [OS] Olfati-Saber, Murray, 2003
- [FL] Tanner, Jadbabaie, Pappas, 2003
- [G] Kempe et al 03, Xiao & Boyd 2004, Xiao et al 06
- [T] Luc Moreau, CDC 2003
- [F] Fax and Murray, 2004

Outline

• Part I
 - We will look at the distributed consensus problem from the readings, and go through the math.

• Part II
 - I will show how ideas from distributed consensus have been used recently to show analytically why/how synchronization and flocking work

PART II

• Synchronization
 - Mirollo and Strogatz, SIAM 1990.
 - Izhikevich, IEEE Trans on Neural Networks, 1999

• Flocking
 - Tanner, Jadbabaie, Pappas, CDC, 2003 (2)
 - Olfati-Saber, Murray, CDC 2003
 - Review: Olfati-Saber, Fax, Murray, 2007

• Both can be seen as a form of collective consensus

Mirollo and Strogatz Sync (1990)

How does a firefly (node) behave?

\[o_i(t+1) = o_i(t) + \Delta o_i \]
\[\Delta o_i = \frac{1}{T} + \text{jump}(o_i) \cdot p_i(t) \]

Where \(p_i(t) = 1 \) if some neighbor fired ("pulse")
A simple jump function is \(\text{jump}(o) = c \cdot o \)
One can understand how this behaves for 2 oscillators
Lucarelli and Wang, 2004

Local Point of View (slightly modified)

\[\Delta o_i = 1/T + \{c_0 o_i\} \sum p_k(t) \]

where \(p_k(t) = 1 \) if nbr \(k \) fired

If \(c \) is very small, then

Can applying Theorem by Izhikevich (1999)

can transform a pulse system to a continuous system

\[\Delta o_i = e(1/T) \sum (O_k(t) - o_i(t)) \]

Global Point of View

\[\Delta o = -\alpha L o(t) \]

Laplacian => Consensus!!

Speed of synchronization is affected by \(v^2 \)

(L&W proved a transformation for all jump functions that satisfy M&S criteria)

Flocking

- Reynolds’ Rules
 - Nearest neighbor behavior
 - Combination: cohesion, repulsion, alignment

 What do these rules guarantee?

- Tanner et al: What defines a Flock?
 - All flock members align their heading
 - All flock members achieve desired spacing
 - A connected flock remains connected (not proved)

- Alignment is like consensus
 - Problem is that the network changes at each step
 - Need to prove Consensus over time-varying topologies!!

Flocking Mathematically

- \(r_i \) and \(v_i \) = position and velocity of node \(i \)
- \(v_i(t+1) = v_i(t) + \Delta v_i \)
- \(\Delta v_i = \text{align-with-nbrs (consensus)} + \text{maintain "good" distance with nbrs} \)
- \(\Delta v_i = \sum [v_k(t) - v_i(t)] + \sum \text{gradient } f(r_{ik}) \)

 \(f(r_{ik}) = \text{infinity if too close, 0 if perfect, high if too far} \)

- Globally
 \[\Delta v = -Lv(t) + \text{other term} \]

- Problem is, the topology changes at every step!
- Old world: \(v(t) = A^t v(0) \)
- New world: \(v(t) = A(t)A(t-1).....A(1)A(0) v(0) \)
 - But it still works!!!!!
Swarm Intelligence

- Clustering
 - Stigmergy
 - Data Sorting & Clustering
- Foraging
 - Stigmergy
 - Search
 - Optimization
 - Routing
- Task Allocation
 - Stigmergy
 - Threshold-based division of labor
- Construction
 - Self-Assembly
 - (Self-assembly/Construction Stigmergy)
- Collective Transport
 - Distributed
 - Consensus (Physics)
- Flocking & Synchrony
 - Distributed
 - Consensus (Spatial/Time)
- Library of Decentralized Algorithms
- House Hunting & Quorum sensing
 - Distributed Consensus
 - Threshold-based division of labor
 - Symmetry-breaking
 - (Spatial/Time)