Boolean Functions

1. Summary
 - Spectral Concentration
 - Decision Trees

2. Q+ A

3. Problems

Given query/random access to \(f: \{-1, 1\}^n \rightarrow \{-1, 1\} \), output \(h: \{-1, 1\}^n \rightarrow \{-1, 1\} \), does \(h(f, \tilde{f}) \leq \varepsilon \).

Assume \(f \in \mathcal{C} \), \(\mathcal{C} \) some class of functions.

- Ex: \(\mathcal{C} = \) linear functions, \(n \) queries.

Decision trees - size vs. \(\varepsilon \) losses

- \(\mathcal{C} = \) size of decision tree

- \(\mathcal{C} = \) depth of longest root-to-leaf path

Then, if \(f \) is \(\varepsilon \)-concentrated on \(\mathcal{F} \), can learn \(f \) to error \(\varepsilon \), in time \(\text{poly}(n, \varepsilon^{-1/2}) \) queries/linear.

- \(\mathcal{F} \) - collection of subclasses of \(\mathcal{F} \)

- \(f \) is \(\varepsilon \)-concentrated on \(\mathcal{F} \) if \(\sum f(x) \leq \varepsilon \) for all \(f \in \mathcal{F} \).

Suppose \(f \) is \(\varepsilon \)-concentrated up to degree \(k \).

- \(\varepsilon = 3 N S_k(f) \)

Using ideas from Markov's inequality

Pens: \(f \) all weighted majority, \(N S_k(f) \leq 1/k \).

Decision trees - decompose into sum of polynomials

- depth \(k \)

- size \(\sum \binom{n}{s} \leq 2^k \)

- degree \(k \)

- \(\delta \) (dt non-zero Fourier)

Example:

- \(f(S) = \delta_{S1}, \delta \leq 2^k \), \(f(S) \leq \text{integer} \)