En 2. Permutations/Combinations

Announcements
- Plan for midterm/final

Generalized Product Rule
- If \(S \) is a set of length-\(k \) sequences (of form \((s_1, s_2, ..., s_k) \)),
 - \(n_1 \) is \# of choices for \(s_1 \)
 - \(n_2 \) is \# of choices for \(s_2 \), given \(s_1 \)
 - \(n_k \) is \# of choices for \(s_k \), given \(s_1, s_2, ..., s_{k-1} \).
- \[|S| = n_1 \cdot n_2 \cdot ... \cdot n_k \]

Division Rule

Definition
- \(f: A \rightarrow B \), is \(k \) to \(1 \) if \(|f^{-1}(b)| = k \) for every \(b \in B \).
- \(|A|^k \geq |B| \)

Division Rule
- If \(f: A \rightarrow B \) is \(k \) to \(1 \),
 - then \(|A|^k \geq |B| \)

Then \# of sequences of length \(k \) from a set \(S \) of size \(k \), no two same, \(|S|^k \), is \(\frac{|S|^k}{k!} \).

Proof
- A set of permutations of \(\pi \) is a permutation of \(\pi \) of length \(k \).
- \[|f^{-1}(b)| = \# \text{ of permutations of } S \setminus b \]

- By division rule:
 - \(|S| \cdot |b| = k! \)
 - \(|\pi| = (\pi) \cdot |\pi| = k! \)

Visions as a set
- \(\{ b \mid b \in S \} \) for some \(S \)

Sorting
- Permutation \(\rightarrow \) sorted list
- A sequence of swaps

Sorting algorithm must do a sort sequence of
- \# of swaps for each permutation
 - 1 steps for each, \(\sum_{i=1}^{k} \frac{1}{k} \)
- \# of permutations is \(\pi(k) \)
- \(|S| \cdot |b| = k! \)

Example
- \(|S|^k \geq |B| \)
- \(|S|^k \geq |B| \)

- \(|S|^k \geq |B| \)

Example
- \(|S|^k \geq |B| \)
- \(|S|^k \geq |B| \)

Example
- \(|S|^k \geq |B| \)
- \(|S|^k \geq |B| \)
Thm. # of subsets of size k of S s.t. $|S|=k$

is $\binom{k}{k} = \binom{k}{k}$ ($\#$ of ways to choose k elements from a set of size k)

Proof. A: set of length k sequences from S, no two are same.

\mathcal{B}: subsets of S of size k

$f: A \rightarrow \mathcal{B}$, $f(a)$ a word in a.

$f^*(b)$ = set of permutations of b

$|f^*(b)| = k!$, by division rule, $|\mathcal{B}| = \frac{k!}{k!}$

$|A| (k-1)!$

\Box

Thm. # of sequences in $\{0,1\}^n$ of length $2n$ is

of subsets of $\{0,1\}^n$ of size $2\times n = \binom{2n}{2}$

Proof. B: $\{0,1\}^n$ of length $2n$.

C: set of words of $\{0,1\}^n$ of size $2n$.

$f: B \rightarrow C$, $f(a) = \{a\}$.

if $a \in C$, $f^*(c) = \{c_1, b, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8\}$

$c = \{c_1, c_2, c_3\}$, $b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8$ not all 0.

Therefore, $|f^*(c)| = 2$, and f is bijection, $|\mathcal{B}| = 10^n$.

\Box