Physics 210B

→ Nonequilibrium Statistical Mechanics
 - near equilibrium
 - dynamic, fluctuating

II.) Kinetic Theory

Dynamics + Diluteness → Boltzmann Eqn.
→ H Theorem → Fluid Equations + Transport

(i) Dynamics + Diluteness → Boltzmann
 → H Theorem

Goal: Statistical theory of many body system

- focus on Dilute, Monatomic Gas

- simplest possible system
To do:

- What is a dilute gas?

- Liouville \rightarrow Boltzmann via diluteness + BBGKY hierarchy

\[\text{diluteness} \quad = \quad n d \] Dimensionless $\# \quad = \quad \text{density} \]

- H theorem

- Implications

\Rightarrow What is a dilute gas?

\[\text{Physical system } \rightarrow \text{ scales} \]

\(\text{i.} \quad V_{1,2} \rightarrow 2 \text{ body potential} \cdot V(|x_1 - x_2|) \]

i.e. hard sphere ranged.
Contrast Coulomb: \(V = 2 \pi z^2 / \sqrt{z} \)

(iii) \(n^{-1/3} = \text{mean interparticle spacing} \)

\(n^{-1/3} = \bar{r} \)

(iv) \(l_{\text{mfp}} = \text{mean free path} \)

\(l_{\text{mfp}} = \frac{1}{n \sigma} \)

\(\sigma \) is the cross-section for 2-particle collision.

Where from?

\(V_{\text{int}} \approx \pi L_{\text{cyl}} \) → volume of interaction cylinder.

Interaction cylinder for scattering of particle with x-sect. \(\sigma \). Cylindrical has length \(L_{\text{cyl}} \).
Now let \(x \equiv \# \text{ of collisions in cylinder of length } L \)

\[x = \pi V_{\text{int}} = \pi NTL_{\text{cyl}} \]

so for \(x = 1 \),

\[L_{\text{cyl}} = \frac{1}{\pi NT} \equiv L_{\text{mp}} \]

\[L_{\text{mp}} = \frac{r^3}{N} \equiv r (\frac{N}{Ad})^2 \]

Alternatively,

\[L_{\text{mp}} = \frac{V_{\text{int}}}{V_{\text{coll}}} \]

\(\text{(iv)} \) \(L \rightarrow \text{system size/gradient scale} \)

Usually: gradient scale for thermodynamic quantity

\[\frac{1}{L} \approx \frac{DT}{F} \frac{\text{m}}{\text{N}} \text{ etc.} \]

\(\frac{1}{L} \) usually \(\ll \) box scale

'Short' mean free path:

\[L_{\text{mp}} < L \text{ usual collisional regime} \]
Short mean free path regime is described by local fluid equations.

\[\frac{\lambda_{\text{ms}}} > L \]

\[\rightarrow \text{Long mean free path regime (kinetic equations)} \]

\[\rightarrow \text{LDA Vlasov Theory} \]

\[\kappa = \frac{\lambda_{\text{ms}}}{L} \quad \text{mostly} \quad \kappa < 1 \]

\&

\[\text{hundsen} \]

Classical dilute gas collisional ordering:

\[a < \bar{\tau} < \lambda_{\text{ms}} < L \] \text{key ordering}
Observe:

- $d < \bar{r}$

\[nd^3 < 1 \]

- Volume of intersection << Volume of mean spacing
- Particles 'usually' free, non-interacting

\[nd^3 < 1 - \text{diluteness} \]

n.b. $d \sim \bar{r} \Rightarrow \text{close packing, crystal}$

- $\text{mean} > \bar{r} > d$

- $\text{mean} > \bar{r} > d$

$\text{mean} / \bar{r} \sim (\bar{r} / d)^2 \gg 1$.

Collisions more infrequent. (Most of time particles are free)
Should contrast "liquid": \(l \mapsto r \).

NB: Beware: liquid.

Fluid equations - also yes.

Related:

\[- \frac{\text{KE}}{\langle v_{\text{cut}} \rangle} \sim \frac{\text{KE}}{\text{Vent} \left(\frac{d^3}{v_N^2} \right)} \gg 1 \]

- contrast: crystal.

(\text{ii}) From Liouville \(\rightarrow \) Boltzmann

- phase space: dofs, translation only.

\[p, x, \Gamma \]
- phase space distribution:

\[f(\Gamma) d\Gamma \rightarrow \text{# particles in } d\Gamma \text{ neighborhood of} \]

point \(\Gamma \) on phase space

\[d\Gamma = d^3x \cdot d^3p \]

- neglect rotation, internal degrees

\[\rightarrow \]

point molecules: translation dof only

\[F = f(x, p, t) \]

\[d\Gamma = d^3x \cdot d^3p \]

Seek equation for \(F(x, p, t) \)

\[\rightarrow \text{Boltzmann Equation} \]
\[\frac{df}{dt} + \nabla \cdot df = C(f) \]

\[C(f) = N \int d\mathbf{y}_2 \, \frac{d}{d\mathbf{y}_2} \cdot \mathbf{y}_2 \left[f(\mathbf{y}_1, t) f(\mathbf{y}_2, t) \right] \]

\[\text{collision operator} \]

\[\text{quadratic, nonlinear} \]

\[\text{test field particles} \]

\[-C(f) \text{ describes evolution of} \]

\[f(\mathbf{y}, t) \text{ interaction with ensemble of "field" particles} \]

\[\text{distribution of} \]

\[\text{"test" particle} \]

\[\text{Nonlinear} \rightarrow \text{"test", field} \]

\[\text{particles same} \]

\[\text{why?} - 2 \text{body interaction} \]
- BE is evolution equation for $f(x, p, t)$
 something useful

- Fluid equations derived from moments of BE.

N.B. Approximate form B.E.:

$$\frac{\partial f}{\partial t} + v \cdot \nabla f = -\nabla \cdot (f - f_0)$$

Knudsen (crook) model \Rightarrow $\nabla \cdot f = -V_0$

$F_0 \sim \text{max}$

⇒ The Problem

- only really know Liouville equation
 for N particle distribution

$N \sim N_a \sim 6.023 \times 10^{23}$ particles.
i.e. \(F_N(x_1, x_2, v_1, v_2; ... - x_0, v_0, t) \)

\[\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \int d^3x_i F_N + \sum_{i=1}^{N} \frac{1}{2} \frac{\partial^2}{\partial x_i \partial x_j} \int d^3x_i F_N = 0 \]

not useful ...

How get \(F_N \to f \)

\[\Delta \text{BGK theory} \]

i.e. exploit weak correlations and aspects of basic interactions to simplify!

Rests on 3 points/ideas:

1) diluteness: \(\Lambda d^3 \ll 1 \) \(\checkmark \)

2) molecular chaos

\[\delta \Rightarrow F(1, 2) \to F(1) F(2) \]

(connection to chaos!?)
3.) Detailed Balance — Basic interaction is time reversible

Two new ideas:

a.) Detailed Balance

In statistical equilibrium:

\# collisions \(A, P \rightarrow P', P' \)

\[= \# \text{ collisions } \quad \text{(field-particle scatterer)} \]

\text{interaction} \quad \text{(test particle)}

\[= W \]
\# collisions \(\bar{p}, p' \rightarrow p, p' \)

\[\begin{array}{c}
\bar{p} \\
p' \\
\rightarrow \\
p \\
p' \\
\end{array} \]

I.e.

\[\# \rightarrow \]

\[\# < \]

What does \# collisions mean?

Quantitatively,

\[WC \bar{p}, p; j, k; \bar{p}', p' \rightarrow \text{transition probability} \]

Then \(D, B \neq \)

\[WC \bar{p}, p; j, k; \bar{p}', p' \rightarrow \frac{F_{j2}(p, \bar{p})}{d^3 p' \cdot d^3 p} \cdot d^3 \bar{p} \cdot d^3 p' \]

\[= WC \bar{p}, p; j, k; \bar{p}', p' \rightarrow F (p, \bar{p}) \]
\[\mathcal{F}_{1/2}(p_1, p_1) = 2 \text{ particle distribution} \]

\[\text{1) at } p_1, \text{ 2) at } p_1 \]

\[\frac{1}{2} \]

particles at \(p \) which interact with others at \(p_1 \) is:

\[\mathcal{F}_{1/2}(p, p_1) d^3p \quad d^3p_1 \]

Aside:

→ Molecular chaos

\[\mathcal{F}(1, 2) = \mathcal{F}(1) \mathcal{F}(2) \]

Valid if:

- chaos
d.e. one \(\lambda \) > 0

Easy if \(N \gg 1 \) → consider resonant denominators

gas ~ dilute ~ no strong correlations

not crystal build up \(T \rightarrow \langle U(4, 2) \rangle \)
Issue: How low can one go with N and still have molecular chaos?

See: Zaslavsky - billiards problem.

So, on statistical equilibrium:

\[f(p, p_i) = f(p_i) f(p) \]

\[f = f_0 = f^{\text{Maxwellian}} \]

(Maxwellian - well known - annihilates collision operator)

\[f_0 = c \exp \left[- \frac{(E - p \cdot V)}{T} \right] \]

\[f(p) f(p_i) \xrightarrow{\text{mech flow}} f(p') f(p_i') \]

Now, on equilibrium.
\[\exp \left[- \frac{(E + E_i)}{T} + \frac{(p + p_i) \cdot V}{T} \right] \]

\[= \exp \left[- \frac{(E' + E_i')}{T} + \frac{(p' + p_i') \cdot V}{T} \right] \]

but energy, momentum conservation ≠

\[E + E_i = E_i' + E' \] energy

\[p + p_i = p_i' + p' \] momentum

\[f(\mathbf{p}, \mathbf{p}_i) = f(\mathbf{p}', \mathbf{p}_i') = \text{constant} \]

\[\text{on } \sigma \text{-state eqn.} \]

\[\rightarrow \text{Back to Detailed Balance} \]

As \[f(\mathbf{p}, \mathbf{p}_i) = f(\mathbf{p}', \mathbf{p}_i') \]

Then, \# collisions \(p, p_i \rightarrow p', p_i' \)

\[= \# \text{ collisions } p', p_i' \rightarrow p, p_i' \]
\[W(\mathbf{P}, \mathbf{A}, \mathbf{A}^\prime) = W(\mathbf{P}^\prime, \mathbf{P}^\prime, \mathbf{P}, \mathbf{P}) \]

The diagram shows a transition from \(\mathbf{P} \) to \(\mathbf{P}^\prime \), which leads to detailed balance as a consequence of time-reversal invariance of basic interaction dynamics.

\[\because \text{Detailed balance is a consequence of time-reversal invariance of basic interaction dynamics.} \]

\(\because \text{Note the}\)

- \(\varepsilon_j \mathbf{P} \cdot \mathbf{V} \) (invariant under time reversal)

- Requires no stereoisomerism

(All that - new substance under parity inversion of molecular structure.)
Can relate w to T by

$$w(f, f', j, f', f') \, dp' \, dp' = \nu_{ro} \, dt$$

Where From?

$$\frac{d}{dt} \left(\text{Interaction Volume} \right) = \text{transition prob.}$$

\[\nu_{ro} \int \, dt \]