Set theory interlude:

A map \(f : S \to T \) is:
- **injective** if \(\forall a, b \in S \), \(f(a) = f(b) \Rightarrow a = b \). (or: \(a \neq b \Rightarrow f(a) \neq f(b) \)). Write \(f : S \hookrightarrow T \).
- **surjective** if \(\forall c \in T \exists a \in S \) such that \(f(a) = c \). Write \(f : S \to T \).
- A **bijection** \(f : S \leftrightarrow T \) if both hold.

Say two sets \(S, T \) have the same **cardinality** if \(\exists \) bijection \(f : S \to T \), and write \(|S| = |T| \).

If there exists an injection \(f : S \inj T \) then we write \(|S| \leq |T| \). This notation is legit thanks to the Schröder-Bernstein theorem:

If there exist injective maps \(f : S \inj T \) and \(g : T \inj S \) then \(|S| = |T| \).

(See Halmos Naive set theory p.88 for a proof; build a bijection \(S \leftrightarrow T \) by using \(f \) on a subset of \(S \) and \(g^{-1} \) on the rest.)

Ex: \(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \) all have the same cardinality, they are called **countably infinite**.

E.g. construct a bijection \(\mathbb{N} \to \mathbb{Z} \) by setting \(f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases} \)

For \(\mathbb{Q} \), first understand how to enumerate \(\mathbb{N} \times \mathbb{N} = \text{pairs of integers} \).

On the other hand, IR is uncountable, using Cantor's diagonal argument:

No map \(f : \mathbb{N} \to \mathbb{R} \) can be surjective, because:

Write decimal or binary expansion of \(f(0) = a_{00} a_{01} a_{02} a_{03} \ldots \)
\[
\begin{align*}
f(1) &= a_{10} a_{11} a_{12} a_{13} \ldots \\
f(2) &= a_{20} a_{21} a_{22} a_{23} \ldots \\
f(3) &= a_{30} a_{31} a_{32} a_{33} \ldots
\end{align*}
\]

Then let \(y = b_0 b_1 b_2 b_3 \ldots \) where we choose \(b_i \neq a_{ij} \) for each \(j \).
Looking at the \(j \)-th digit, \(y \neq f(j) \) for all \(j \in \mathbb{N} \), so \(f \) can't be surjective.

The same argument shows there are arbitrarily large cardinals:

Given a set \(S \), let \(\mathcal{P}(S) = \{\text{subsets of } S\} \) (**power set of \(S \)**).

\[
\{0,1\}^S = \{\text{maps } f : S \to \{0,1\}\}
\]

If \(S \) is finite, \(|S| = n \), then \(|\mathcal{P}(S)| = 2^n \). What if \(S \) is infinite?

Thus, if \(S \) is infinite then \(|\mathcal{P}(S)| > |S| \).

Proof (Cantor):

Given \(f : S \to \mathcal{P}(S) \), let \(A = \{x \in S \mid x \notin f(x)\} \).
Assume \(A = f(a) \) for some \(a \in S \).
Then \(a \in A \) iff \(a \notin f(a) \), contradiction. So \(A \notin f(S) \) \(\forall \) surjection.
Defn: A group G is a set with an operation $G \times G \rightarrow G$ such that

1. identity: $\exists e \in G$ s.t. $\forall a \in G$, $ae = ea = a$.
2. inverse: $\forall a \in G$, $\exists a^{-1} \in G$ s.t. $ab = ba = e$.
3. associativity: $\forall a, b, c \in G$, $(ab)c = a(bc)$.

Examples: numbers, matrices, permutations, ...

We didn't have time to discuss: Products of groups.

* Given two groups G, H, the product group is $G \times H = \{ (g, h) \mid g \in G, h \in H \}$

 with composition law $(g, h) \cdot (g', h') = (gg', hh')$.

* If G, H are finite, of order $m = |G|$ and $n = |H|$, then $G \times H$ is a finite group of order mn.

* Similarly for product of n groups:

 Ex: $\mathbb{Z}^n = \{ (a_1, \ldots, a_n) \mid a_i \in \mathbb{Z} \}$,
 $\langle a_1, a_n \rangle + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$

 (similarly \mathbb{Q}^n, \mathbb{R}^n, etc. with componentwise addition).

* Given infinitely many groups G_1, G_2, G_3, \ldots, there are two different notions:

 \begin{enumerate}
 \item the direct product \(\prod_{i=1}^{\infty} G_i = \{ (a_i) \mid a_i \in G_i \} \)

 \item the direct sum \(\bigoplus_{i=1}^{\infty} G_i = \{ (a_i) \mid a_i \in G_i \text{, all but finitely many are } \text{identity} \} \)
 \end{enumerate}

Ex: consider $G_0 = G_1 = \ldots = (\mathbb{R}, +)$, depth ($a_0, a_1, a_2, \ldots$) by Σx^i.

Then \(\prod_{i=0}^{\infty} \mathbb{R} = \mathbb{R}[x] \) formal power series \(\sum_{i=0}^{\infty} a_i x^i \) (w/ addition)

\(\bigoplus_{i=0}^{\infty} \mathbb{R} = \mathbb{R}[x] \) polynomials \(\sum_{\text{finite}} a_i x^i \).

* Subgroups:

Defn: A subgroup H of a group G is a subset $H \subseteq G$ which is closed under composition $(a, b \in H \Rightarrow ab \in H)$ and inversion $(a \in H \Rightarrow a^{-1} \in H)$.

These conditions imply $e \in H$. So H (with same operation) is also a group.

Say H is a proper subgroup if $H \subsetneq G$.

Examples:

- $(\mathbb{Z}, +) \subseteq (\mathbb{Q}, +) \subseteq (\mathbb{R}, +)$.
- $(\mathbb{Q}^*, x) \subseteq (\mathbb{R}^*, x) \subseteq (\mathbb{C}^*, x) \supset (\mathbb{S}^1, x)$
- $\{ e \} \leq G$ trivial subgroup

- $H_i \subseteq G_i \Rightarrow H_1 \times \ldots \times H_n \subseteq G_1 \times \ldots \times G_n$
- $\bigoplus G_i \leq \prod G_i$.
Subgroups of \mathbb{Z}: given $a \in \mathbb{Z}_{>0}$, $\mathbb{Z}_a = \{ na \mid n \in \mathbb{Z} \} \subset \mathbb{Z}$ is a subgroup.

Proof: All nontrivial subgroups of $(\mathbb{Z}, +)$ are of this form.

Proof: This follows from the Euclidean algorithm. Given a nontrivial subgroup $\{0\} \neq H \subset \mathbb{Z}$, there exists $a \in H$ such that $a > 0$. Let a_0 be the smallest positive element of H. Given any $b \in H$, $b = qa_0 + r$ for some $q \in \mathbb{Z}$ and $0 \leq r < a_0$ (remainder). Since $b \in H$ and $qa_0 \in H$, $r \in H$. Since $r < a_0$, by def. of a_0, r must be zero. Hence $b \in \mathbb{Z}_{a_0}$, so $H \subset \mathbb{Z}_{a_0}$, and conversely $\mathbb{Z}_{a_0} \subset H$, so $H = \mathbb{Z}_{a_0}$. □

So, every subgroup of \mathbb{Z} is generated by a single element a_0, in the following sense.

Observe: if $H, H' \subset G$ are two subgroups, then $H \cap H'$ is also a subgroup.

Proof:
- $e \in HH'$ so nonempty
- if $a, b \in HH'$ then $a, b \in H$ and $a, b \in H'$, so $ab \in HH'$.
 - likewise for inverses.

Similarly for more than two subgroups.

Now: given a subset $S \subset G$ (nonempty), what is the smallest subgroup of G which contains S? This is denoted $\langle S \rangle$ and called the subgroup generated by S.

Answer: look at all subgroups of G which contain S (there's at least G itself!) and take their intersection, $\langle S \rangle = \bigcap_{H \supseteq S \text{ subgroup}} H$.

More useful answer: $\langle S \rangle$ must contain all products of elements of S and their inverses, and these form a subgroup of G, so $\langle S \rangle = \{ a_1 \cdots a_k \mid a_i \in S \cup S^{-1} \}$

Def: A group is cyclic if it is generated by a single element.

(Ex: \mathbb{Z}, \mathbb{Z}_n. These are in fact the only cyclic groups up to isomorphism).

Ex: $SL_2(\mathbb{Z}) = \{ (a b) \mid a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1 \}$ can be generated by two elements! [exercise! fairly hard without hint]

Homomorphisms:

Def: Given two groups G, H, a homomorphism $\phi: G \to H$ is a map which respects the composition law: $\forall a, b \in G$, $\phi(ab) = \phi(a) \phi(b)$.
(This implies $\phi(e_G) = e_H$, and $\phi(a^{-1}) = \phi(a)^{-1}$).

Rank: A pedantic way to state $\phi(ab) = \phi(a) \phi(b)$ is by a commutative diagram

$G \times G \xrightarrow{\phi \times \phi} H \times H$ "commutative diagram" means $G \xleftarrow{\phi} G$, give the same map:

$M_G \downarrow \phi \downarrow M_H$

\[G \xrightarrow{\phi} H \]

It doesn't matter if we multiply first or apply ϕ first.
* An **isomorphism** is a bijective homomorphism (two isomorphic groups are "structurally the same").
* An **automorphism** is an isomorphism $G \to G$.

Examples:
- All groups of order 2 are isomorphic! $S_2 = \{(\text{id}, (12)) \mapsto ((\pm 1), x) = (\mathbb{Z}_2^+, +)\}$
- Because the table is always:

$$
\begin{array}{c|ccc}
 & e & x \\
\hline
\text{e} & e & e \\
\text{x} & e & x \\
\end{array}
$$

- S_3 is the symmetries of a triangle (permutation of vertices).

Example:
- $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $a \mapsto a$ and n (remainder of Euclidean division by n).
- If $n|n$, $\mathbb{Z}/m \to \mathbb{Z}/n$, similarly (e.g., $\mathbb{Z}/100 \to \mathbb{Z}/10$).
- Determinant: $GL_n(\mathbb{R}) \to (\mathbb{R}_k^*, \cdot) \quad (\det(AB) = \det(A) \det(B))$.

Definition:
- The **kernel** of a group homomorphism $\varphi: G \to H$ is $\ker(\varphi) = \{a \in G \mid \varphi(a) = e_H\}$.
- This is a subgroup of G. (Check it contains e_G, products, inverses.)
- φ is injective iff $\ker(\varphi) = \{e_G\}$ (wrt: $\varphi(a) = \varphi(b) \iff a^{-1}b \in \ker(\varphi)$).

Definition:
- The **image** of a group homomorphism $\varphi: G \to H$ is $\text{Im}(\varphi) = \varphi(G) = \{b \in H \mid \exists a \in G \text{ s.t. } \varphi(a) = b\}$.
- This is a subgroup of H. φ is surjective iff $\text{Im}(\varphi) = H$.

Remark: if φ is injective, then G is isomorphic to the subgroup $\text{Im}(\varphi) \subset H$. (The isomorphism is given by the map $G \to \text{Im}(\varphi)$, $a \mapsto \varphi(a)$).

Example: Let $a \in G$ be any element in a group G, then the map $\varphi: \mathbb{Z} \to G$, $n \mapsto a^n$ is a homomorphism, with image $\langle a \rangle$ the subgroup generated by a.

- The order of $a \in G$ is the smallest positive k such that $a^k = e$, if it exists. Else say a has infinite order.

If a has infinite order then powers of a are all distinct, $\varphi: n \mapsto a^n$ is injective, and $\langle a \rangle$ is isomorphic to \mathbb{Z}. If a has finite order k then $\ker(\varphi) = \mathbb{Z}_k$, and $\langle a \rangle = \{a^n \mid n = 0, \ldots, k-1\}$ is isomorphic to \mathbb{Z}/k.

(This completes the classification of cyclic groups, by the way).

Example: $\mathbb{Z}/6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$ (observe: $(1,1) \in \mathbb{Z}_2 \times \mathbb{Z}_3$ has order 6, so generates).

$a \mapsto (a \mod 2, a \mod 3)$

Similarly, $\gcd(m,n) = 1 \Rightarrow \mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$. But $\mathbb{Z}_2 \times \mathbb{Z}_2 \not\cong \mathbb{Z}_4$.

$x + x = 0 \forall x \text{ vs. } 1 + 1 \neq 0$.

\[\text{do not confuse order of } a \in G \text{ with order of } G (|G|)\]

Through, order(a) = $|\langle a \rangle|$.