Newton's Second Law

\[F_{\text{net}} = ma \]

- **Problem-Solving Strategy**:
 1. Draw a picture; draw and label all forces present.
 2. Choose a coordinate system.
 3. Write Newton's 2nd law in each direction.
 4. Solve for unknown quantities.
 5. Plug in numbers last.

Forces

- **Gravitational Force** F_g
 - Force due to gravity; equal to an object's mass multiplied by the gravitational acceleration $g = 9.81 \text{ m/s}^2$
 \[F_g = mg \]

- **Normal Force** N
 - Contact force that always acts perpendicular to a surface.
 - Magnitude equal to whatever is necessary in order to keep the object from falling through the surface.

- **Tension Force** T
 - Pulling force that acts in the direction of the string and is the same at every point on the string.
Forces

- **Friction**
 - Static Friction f_s: friction force that resists the motion of two bodies at rest w.r.t. each other

 maximum value: $f_{s,\text{max}} = \mu_s N$

 - Kinetic Friction f_k: friction force that resists the motion of two bodies w.r.t. each other

 $f_k = \mu_k N$

- **Drag**
 - Viscous Drag: drag force for small objects moving slowly through viscous fluids

 $F_{\text{drag}} = 6\pi \eta RV$

 η - viscosity of fluid
 R - radius
 V - speed

 - Pressure Drag: drag force for large objects moving quickly through non-viscous fluids

 $F_{\text{drag}} = \frac{1}{2} C_d \rho A V^2$

 ρ - density of fluid
 A - cross-sectional area
 V - speed
 C_d - drag coefficient
1. Two blocks 1 and 2, on a frictionless table, are pushed from the left by a horizontal force \(F_1 \) and on the right by a horizontal force \(F_2 \), as pictured. The magnitudes of the pushing forces satisfy the inequality

\[|F_1| > |F_2| \]

Which of the following statements is true about the magnitude of the contact force \(N \) between the two blocks?

A) \(N > |F_1| > |F_2| \)

B) \(|F_1| > N > |F_2| \)

C) \(|F_1| > N = |F_2| \)

D) \(|F_1| = N > |F_2| \)

E) \(|F_1| = |F_2| > N \)

→ because \(|F_1| > |F_2| \), the two blocks will move to the right

→ By Newton's 3rd law, the force of block 1 on block 2 is equal to the force of block 2 on block 1. This is the "contact force" between the two blocks.
2. You push on a block of mass M with a horizontal force F, as shown below. A block of mass m on top of M moves precisely along with it. What force directly causes m to accelerate horizontally along with M?

![Diagram](image)

A) The normal force between the blocks
B) The static friction force between the blocks

c) The kinetic friction force between the blocks
D) The gravitational force on m

e) The force you apply on M
f) No force is required because the masses are in contact

→ the static friction force keeps m from losing contact with M and directly causes m to accelerate horizontally along with M.

→ the normal and gravitational forces act in the vertical direction; the kinetic friction force would appear if m was moving with respect to M; the force you apply on M does not directly affect m

What is the maximum magnitude of F in order for m to move along with M? How would kinetic friction on the surface under M change this?

→ first, let's draw a free body diagram and write Newton's second law for m:

![Diagram](image)

x-direction: $F_{net, x} = ma$

$F_s = ma$

y-direction: $F_{net, y} = 0$

$N_m - mg = 0$

$N_m = mg$

\[
\text{NOTE: } F_s \text{ points to the right since, without it, } m \text{ would move to the left. The friction force acts in the direction opposite of this movement.}
\]
because we are trying to solve for the maximum magnitude of F, the friction force F_s will also be at its max value:

$$F_s = \mu mg$$

the two blocks are moving together, so they move at the same acceleration, which can be solved for by

$$F_s = ma$$

$$\mu mg = ma$$

$$a = \mu g$$

now let's draw a free body diagram and write Newton's second law for M:

\[\begin{align*}
F &= N_m \\
Mg &= 0 \\
N_m &= Mg + N_m \\
N_m &= Mg + mg \\
N_m &= (M+m)g
\end{align*} \]

NOTE: Block M has two normal forces: N_m due to the ground and N_m due to block m.

Also, F_s now points to the left since block M is moving to the right.

we have already solved for F_s and a, so we can now determine the maximum magnitude of F:

$$F - F_s = Ma$$

$$F = F_s + Ma$$

$$= (\mu mg) + M(\mu g)$$

$$F = (M+m)\mu g$$

Maximum magnitude, frictionless table.
2. Now, if the table was not frictionless, a kinetic friction force \(f_k \) would also be applied to block \(M; \) in this case, the free body diagram and Newton's second law become

X-direction

\[
F_{net,x} = Ma
\]

\[
F - f_s - f_k = Ma
\]

\[
F = Ma + f_s + f_k
\]

Y-direction

\[
F_{net,y} = 0
\]

\[
N_M - N_m - Mg = 0
\]

\[
N_M = N_m + Mg
\]

\[
N_m = (M+m)g
\]

\[
f_k = \mu_k N_m
\]

\[
f_k = \mu_k (M+m)g
\]

→ the acceleration and static friction force remain unchanged; the kinetic friction force is equal to

\[
f_k = \mu_k N_m
\]

\[
f_k = \mu_k (M+m)g
\]

→ we can now solve for the maximum magnitude of \(F \) in the presence of kinetic friction

\[
F = Ma + f_s + f_k
\]

\[
= M(M_s + \mu_s mg) + \mu_s mg + \mu_k (M+m)g
\]

\[
= \mu_s (M+m)g + \mu_k (M+m)g
\]

\[
F = (\mu_s + \mu_k)(M+m)g
\]

Maximum magnitude, kinetic friction present

→ As, the maximum magnitude of \(F \) increases in the presence of kinetic friction
3. If a 70-kg skier is subjected to a pressure drag force \(F_{\text{drag}} = \frac{1}{2} C_d \rho S A V^2 \), with \(C_d = 0.5 \), \(\rho = 1.2 \text{ kg/m}^3 \), and \(A = 0.5 \text{ m}^2 \), and is also subjected to a kinetic friction force with \(\mu_k = 0.1 \), calculate the terminal velocity for the skier on a slope that is inclined at \(\theta = 30^\circ \) relative to the horizontal.

For problems involving an inclined plane, it is most convenient to use a tilted coordinate system that is aligned with the plane.

We can solve for the terminal velocity by drawing a free body diagram and writing Newton’s second law:

\[x\text{-direction} \]
\[mgsin\theta - f_k - F_{\text{drag}} = 0 \]
\[F_{\text{drag}} = mgsin\theta - f_k \]
\[\frac{1}{2} C_d \rho S A V^2 = mgsin\theta - \mu_k N \]

\[y\text{-direction} \]
\[N - mgcos\theta = 0 \]
\[N = mgcos\theta \]

\[V^2 = \frac{2 (mgsin\theta - \mu_k mgcos\theta)}{C_d \rho A} \]
\[V = \sqrt{\frac{2mg (sin\theta - \mu_k cos\theta)}{C_d \rho A}} \]

\[\frac{2 (70 \text{ kg})(9.81 \text{ m/s}^2)(sin(30) - (0.1)cos(30))}{(0.5)(1.2 \text{ kg/m}^3)(0.5 \text{ m}^2)} \]

\[V = 43.5 \text{ m/s} \]