Query Optimization 2

Instructor: Matei Zaharia
Recap: Data Statistics

Information about tuples in a table that we can use to estimate costs

» Must be *approximated* for intermediate tables

We saw one way to do this for 4 statistics:

» $T(R) = \# \text{ of tuples in } R$
» $S(R) = \text{average size of tuples in } R$
» $B(R) = \# \text{ of blocks to hold } R\text{'s tuples}$
» $V(R, A) = \# \text{ distinct values of attribute } A \text{ in } R$
Another Type of Data Stats: Histograms

number of tuples in R with A value in a given range

\[\sigma_{A \geq a}(R) = ? \]
Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
Cost Models

How do we measure a query plan’s cost?

Many possible metrics:

» Number of disk I/Os
» Number of compute cycles
» Combined time metric
» Memory usage
» Bytes sent on network
» ...

We’ll focus on this
Example: Index vs Table Scan

Our query: $\sigma_p(R)$ for some predicate p

$s = p$’s selectivity (fraction tuples passing)

Table scan:

- R has $B(R) = T(R) \times S(R)/b$ blocks on disk
- Cost: $B(R)$ I/Os

Index search:

- Index lookup for p takes L I/Os
- We then have to read part of R;
 - $Pr[\text{read block } i]$
 $\approx 1 – Pr[\text{no match}]^\text{records in block}$
 $= 1 – (1–s)^b / S(R)$
 - Cost: $L + (1–(1–s)^b/S(R)) \times B(R)$
What If Results Were Clustered?

Unclustered: records that match \(p \) are spread out uniformly

Clustered: records that match \(p \) are close together in \(R \)'s file

We’d need to change our estimate of \(C_{\text{index}} \):

\[
C_{\text{index}} = L + s \cdot B(R)
\]

Less than \(C_{\text{index}} \) for unclustered data

Fraction of \(R \)'s blocks read
Join Operators

Join orders and algorithms are often the choices that affect performance the most.

For a multi-way join $R \Join S \Join T \Join \ldots$, each join is selective, and order matters a lot.

» Try to eliminate lots of records early.

Even for one join $R \Join S$, algorithm matters.
Example

SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = "car"
AND customer.country = "US"

Plan 1:

Plan 2:

When is each plan better?
Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join
Iteration Join

for each \(r \in R_1 \):
 for each \(s \in R_2 \):
 if \(r.C == s.C \) then output (r, s)

I/Os: one scan of \(R_1 \) and \(T(R_1) \) scans of \(R_2 \), so

\[
\text{cost} = B(R_1) + T(R_1) B(R_2)
\]

Improvement: read \(M \) blocks of \(R_1 \) in RAM at a time then read \(R_2 \):

\[
B(R_1) + B(R_1) B(R_2) / M
\]

Note: cost of writes is always \(B(R_1 \Join R_2) \)
Merge Join

if R_1 and R_2 not sorted by C then sort them
$i, j = 1$
while $i \leq T(R_1)$ && $j \leq T(R_2)$:
 if $R_1[i].C = R_2[j].C$ then outputTuples
 else if $R_1[i].C > R_2[j].C$ then $j += 1$
 else if $R_1[i].C < R_2[j].C$ then $i += 1$
procedure outputTuples:
 while $R_1[i].C = R_2[j].C$ && $i \leq T(R_1)$:
 $jj = j$
 while $R_1[i].C = R_2[jj].C$ && $jj \leq T(R_2)$:
 output ($R_1[i]$, $R_2[jj]$)
 $jj += 1$
 $i += i+1$
Example

<table>
<thead>
<tr>
<th>i</th>
<th>$R_1[i].C$</th>
<th>$R_2[j].C$</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>7</td>
</tr>
</tbody>
</table>
Cost of Merge Join

If R_1 and R_2 already sorted by C, then

cost = $B(R_1) + B(R_2)$ reads

(+ write cost of $B(R_1 \bowtie R_2)$)
Cost of Merge Join

If R_i is not sorted, can sort it in $4 \cdot B(R_i) \text{ I/Os}$:

- Read runs of tuples into memory, sort
- Write each sorted run to disk
- Read from all sorted runs to merge
- Write out results
Join with Index

for each \(r \in R_1 \):
 list = index_lookup(R_2, C, r.C)
 for each \(s \in \text{list} \):
 output \((r, s)\)

Read I/Os: 1 scan of \(R_1 \), \(T(R_1) \) index lookups on \(R_2 \), and \(T(R_1) \) data lookups

\[\text{cost} = B(R_1) + T(R_1) \left(L_{\text{index}} + L_{\text{data}} \right) \]

Can be less when \(R_1 \) is sorted/clustered by \(C \)!
Hash Join (R_2 Fits in RAM)

hash = load R_2 into RAM and hash by C
for each $r \in R_1$:
 list = hash_lookup(hash, r.C)
 for each $s \in list$:
 output (r, s)

Read I/Os: $B(R_1) + B(R_2)$
Hash Join on Disk

Can be done by hashing both tables to a common set of buckets on disk
 » Similar to merge sort: $4 \left(B(R_1) + B(R_2) \right)$

Trick: hash only (key, pointer to record) pairs
 » Can then sort the pointers to records that match and fetch them near-sequentially
Summary

Join algorithms can have different performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted
Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
Complete CBO Process

Generate and compare possible query plans

- Generate
- Prune
- Estimate Cost
- Select

Query

Generate Plans

Prune

Select

Pick Min

Costs
How to Generate Plans?

Simplest way: recursive search of the options for each planning choice

Access paths for table 1 × Access paths for table 2 × Algorithms for join 1 × Algorithms for join 2 × …
How to Generate Plans?

Can limit search space: e.g. many DBMSes only consider “left-deep” joins
How to Generate Plans?

Can prioritize searching through the most impactful decisions first
 » E.g. join order is one of the most impactful
How to Prune Plans?

While computing the cost of a plan, throw it away if it is worse than best so far

Start with a greedy algorithm to find an “OK” initial plan that will allow lots of pruning
Memoization and Dynamic Programming

During a search through plans, many subplans will appear repeatedly

Remember cost estimates and statistics (T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it easy to reuse results (dynamic programming)
Resource Cost of CBO

It’s possible for cost-based optimization itself to take longer than running the query!

Must design optimizer to not take too long

» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of the execution cost (e.g. join order)
Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

Spark SQL
Background

2004: MapReduce published, enables writing large scale data apps on *commodity clusters*
» Cheap but unreliable “consumer” machines, so system emphasizes fault tolerance
» Focus on C++/Java programmers
Background

2006: Apache Hadoop project formed as an open source MapReduce + distributed FS
 » Started in Nutch open source search engine
 » Soon adopted by Yahoo & Facebook

2006: Amazon EC2 service launched as the newest attempt at “utility computing”
Background

2007: Facebook starts Hive (later Apache Hive) for SQL on Hadoop

» Other SQL-on-MapReduces existed too
» First steps toward “data lake” architecture
Background

2006-2012: Many other cluster programming models to bring MR’s benefits to other apps
Background

2010: Spark engine released, built around MapReduce + in-memory computing
 » Motivation: interactive queries + iterative algorithms such as graph analytics and ML

Spark then moves to be a general (“unified”) engine, covering existing ones
non-test, non-example source lines
Background

2012: Shark starts as a port of Hive on Spark

2014: Spark SQL starts as a SQL engine built directly on Spark (but interoperable w/ Hive)
 » Also adds DataFrames for integrating relational ops in Scala/Java/Python programs
Original Spark API

Resilient Distributed Datasets (RDDs)
 » Immutable collections of objects that can be stored in memory or disk across a cluster
 » Built via parallel transformations (map, filter, …)
 » Automatically rebuilt on failure
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```scala
lines = spark.textFile("hdfs://...")
errors = lines.filter(s => s.startswith("ERROR"))
messages = errors.map(s => s.split('\t')(2))
messages.cache()

messages.filter(s => s.contains("foo")).count()
messages.filter(s => s.contains("bar")).count()
...```

Interactive ad-hoc queries in your favorite language
Challenges with Spark’s Functional API

Looks high-level, but hides many semantics of computation from engine

» Functions passed in are arbitrary code
» Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways
Example Problem

```javascript
pairs = data.map(word => (word, 1))

groups = pairs.groupByKey()

groups.map((k, vs) => (k, vs.sum))
```

Materializes all groups as lists of integers

Then promptly aggregates them
Spark SQL & DataFrames

Efficient library for working with structured data
» 2 interfaces: SQL for data analysts and external apps, DataFrames for complex programs
» Optimized computation & storage underneath
Spark SQL Architecture

- SQL
- Data Frames
- Logical Plan
- Optimizer
- Physical Plan
- Code Generator
- RDDs
- Catalog

Data Source API

Data Sources: HDFS, Cassandra, HBase, Elasticsearch, PostgreSQL, Hive, ...
DataFrame API

DataFrames hold rows with a known schema and offer relational operations through a DSL

c = HiveContext()
users = c.sql("select * from users")

ma_users = users[users.state == "MA"]

ma_users.count()

ma_users.groupby("name").avg("age")

ma_users.map(lambda row: row.user.toUpper())
API Details

Based on data frame concept in R, Pandas
  » Spark is the first to make this declarative

Integrated with the rest of Spark
  » ML library takes DataFrames as input/output
  » Easily convert RDDs ↔ DataFrames
What DataFrames Enable

1. Compact binary representation
   • Columnar, compressed cache; rows for processing

2. Optimization across operators (join reordering, predicate pushdown, etc)

3. Runtime code generation
Performance

![Bar chart showing performance comparison for different data structures and programming languages for aggregation benchmark. The x-axis represents time in seconds. The y-axis lists DataFrame SQL, DataFrame R, DataFrame Python, DataFrame Scala, RDD Python, and RDD Scala. The chart indicates that RDD Scala has the highest time for aggregation, followed by RDD Python, with DataFrame implementations showing lower times.]
Data Sources

Uniform way to access structured data
  » Apps can migrate across Hive, Cassandra, JSON, Parquet, …
  » Rich semantics allows query pushdown into data sources

```
users[users.age > 20]
```

```
select * from users
```
Examples

**JSON:**
```
select user.id, text from tweets
```

**JDBC:**
```
select age from users where lang = "en"
```

**Together:**
```
select t.text, u.age
from tweets t, users u
where t.user.id = u.id
and u.lang = "en"
```
Extensible Optimizer

Uses Scala pattern matching (see demo!)
Spark Usage Today

Languages Used in Databricks Notebooks

- Python: 68%
- SQL: 18%
- Scala: 11%
- R: 3%

>90% of API calls run via Spark SQL engine
Extensions to Spark SQL

Structured Streaming (streaming SQL)

Many data sources using the pushdown API

Interval queries on genomic data

Geospatial package (Magellan)