More Variational Autoencoders, Discrete Latent Variables

Karl Stratos

Rutgers University
Review: Variational Autoencoders (VAEs)

▶ **VAE.** Maximizing ELBO written as an autoencoding objective

\[
\text{ELBO}(\theta, \phi) = \mathbb{E}_{x \sim \text{pop}, \, z \sim q_\phi(\cdot \, | \, x)} \left[\log \kappa_\theta(x | z) \right] - \mathbb{E}_{x \sim \text{pop}} \left[D_{KL}(q_\phi(\cdot \, | \, x) || \pi_\theta) \right]
\]

- **reconstruction**
- **regularization**

▶ Example: Gaussian VAE for Language Modeling

- Population distribution \(\text{pop}\) over sentences \(x\)
- \(q_\phi(z | x) = \mathcal{N}(\mu_\phi(x), \text{diag}(\sigma^2_\phi(x)))\) conditional density over \(\mathbb{R}^d\) given \(x\)
- \(\kappa_\theta(x | z)\) any language model conditioning on \(z\)
- \(\pi_\theta(z) = \mathcal{N}(0_d, I_{d \times d})\) standard Gaussian prior

▶ Many tricks possible with Gaussian parameterization: (1) KL computed exactly, (2) reconstruction term estimated by differentiable sampling ("reparameterization trick")
Usage of Gaussian VAE

- Once Gaussian VAE is “well trained” (more later), we can generate sentences meaningfully from \mathbb{R}^d
- “Interpolation”: Sample $z, z' \sim \mathcal{N}(0, I_{d \times d})$, greedy decoding from $\kappa_{\theta}(x | \alpha z + (1 - \alpha) z')$ (examples from Li et al. (2019))

$$z \Rightarrow \text{a man with a cane is walking down the street}.$$
$$0.8z + 0.2z' \Rightarrow \text{a man with a cane is walking down the street}.$$
$$0.6z + 0.4z' \Rightarrow \text{a man in a blue shirt is eating food}.$$
$$0.4z + 0.6z' \Rightarrow \text{people are eating food}.$$
$$0.2z + 0.8z' \Rightarrow \text{people walk in a city}.$$
$$z' \Rightarrow \text{people are outside in a city}$$

- Semi-supervised learning: Can use $\mu_{\phi}(x) \in \mathbb{R}^d$ as a pretrained embedding of x and train a downstream classifier
- Also a better language model: Perplexity slightly lower compared to vanilla LM (100 vs 96 on PTB). But how do we measure perplexity with this model?
ELBO vs MLL

- Recall: ELBO is a (possibly loose) lower bound on MLL (marginal log likelihood)

\[L(\theta) - \text{ELBO}(\theta, \phi) = D_{\text{KL}}(q_\phi \| \omega_\theta) \geq 0 \]

- Need an unbiased estimator of \(L(\theta) \) to estimate it directly (e.g., for perplexity which is \(\exp(-L(\theta)/N_{\text{tokens}}) \))

- Solution: *Multi-sample* importance sampling

\[
L_x(\theta) = \log \mathbb{E}_{z_1 \ldots z_K \sim q_\phi(\cdot|x)} \left[\frac{1}{K} \sum_{k=1}^{K} \frac{p_\theta(x, z_k)}{q_\phi(z_k|x)} \right] \\
\geq \mathbb{E}_{z_1 \ldots z_K \sim q_\phi(\cdot|x)} \left[\log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p_\theta(x, z_k)}{q_\phi(z_k|x)} \right) \right] = \text{ELBO}_x^K(\theta, \phi)
\]

- ELBO special case with \(K = 1 \), but \(\text{ELBO}_x^K(\theta, \phi) \to L_x(\theta) \) as \(K \to \infty \). Can also be directly optimized: “importance weighted autoencoder” (Burda et al., 2016)
Discrete Latent Variables

- Gaussian reparameterization trick allows us to “backpropagate through sampling” for continuous $z \in \mathbb{R}^d$

\[
\frac{\partial}{\partial \phi} \left(\mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\log \kappa_{\theta}(x|z) \right] \right) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0_d, I_d \times d)} \left[\frac{\partial}{\partial \phi} \left(\log \kappa_{\theta}(x|\mu_{\phi}(x) + \sigma_{\phi}(x) \odot \epsilon) \right) \right]
\]

- What if $z \in \{0, 1\}^d$? Why do we care about discrete? Some reasons
 - (Possibly) Interpretable: 1st dim corresponding to sentiment, 2nd dim gender, etc.
 - Compression: Cheaper to store ints than floats.
- Typical inference network: “mean-field approximation”

\[
q_{\phi}(z|x) = \prod_{i=1}^{d} q_{\phi}(z_i|x, i)
\]

Easy to parametrize: $q_{\phi}(1|x, i) = \sigma(w_i \cdot \text{enc}_{\phi}(x))$
Backpropagation Through Discrete Sampling

- Marginalization intractable (2^d possible values of z). This is despite mean-field approx

$$E_{z \sim q_\phi(\cdot|x)} [\log \kappa_\theta(x|z)] = \sum_{z_1 \in \{0,1\}} q_\phi(z_1|x,1) \cdots \sum_{z_d \in \{0,1\}} q_\phi(z_d|x,d) \log \kappa_\theta(x|z)$$

- So we’d like to approximate by sampling z. Here it’s fine to sample $z_i \sim q_\phi(\cdot|x,i)$ independently and use $z = (z_1 \ldots z_d)$ to estimate $\log \kappa_\theta(x|z)$

- Exercise: Verify the reparameterization trick

$$z_i \sim q_\phi(\cdot|x,i) \iff z_i = \text{step}(q_\phi(1|x,i) - \epsilon)$$

where $\epsilon \sim \text{Unif}(0,1)$ and $\text{step}(y) = 1$ if $y \geq 0$ and 0 otherwise

- Unfortunately z_i still non-differentiable because of step
Straight-Through Gradient Estimator (Hinton, 2012)

- Idea: Approximate \(\frac{\partial}{\partial y} \text{step}(y) \approx \frac{\partial}{\partial y} y = 1 \)
 - \(f(y) = y \) linearization of \(\text{step}(y) \) preserving the sign

- “Straight-through” gradient estimation of the step function
 \[
 \frac{\partial \text{step}(f(\phi))}{\partial \phi} = \frac{\partial \text{step}(f(\phi))}{\partial f(\phi)} \times \frac{\partial f(\phi)}{\partial \phi} \approx \frac{\partial f(\phi)}{\partial \phi}
 \]

- With this approximation, we can sample \(z_i \sim q_\phi(\cdot|x,i) \) in the forward pass and backpropage directly to \(q_\phi(1|x,i) \) in the backward pass!
Implemention Trick for Straight-Through

- PyTorch style code

\[z = \text{bernoulli}(q_\phi) \quad \# \text{Not differentiable} \]
\[\tilde{z}_\phi = q_\phi + (z - q_\phi).\text{detach()} \quad \# \text{Differentiable } (\tilde{z}_\phi.\text{val} = z.\text{val}) \]

- Corresponding computation graph

- Generally useful trick. Another example: gradient reversal layer (Ganin and Lempitsky, 2014)

\[\tilde{x} = -x + (x + x).\text{detach()} \]
Categorical VAE

- What if $z \in \{1 \ldots K\}^d$?
 - Again mean-field approx $q_\phi(z|x) = \prod_{i=1}^d q_\phi(z_i|x,i)$
 - Easy to parameterize: $q_\phi(\cdot|x,i) = \text{softmax}(\text{enc}_\phi^{(i)}(x))$

- **Gumbel-max trick**

 $$z_i \sim q_\phi(\cdot|x,i) \iff z_i = \arg\max_{k=1}^K \left[\text{enc}_\phi^{(i)}(x)\right]_k + \epsilon_k$$

 where $\epsilon_1 \ldots \epsilon_K \overset{iid}{\sim} \text{Gumbel}(0,1)$. Unfortunately z_i still non-differentiable because of $\arg\max$

- **Differentiable relaxation.** WLOG assume one-hot representation: $z_i = e_k \in \{0, 1\}^K$ means $z_i = k$. Then

 $$z_i \sim q_\phi(\cdot|x,i) \xrightarrow{\tau \to 0^+} z_i = \text{softmax} \left(\frac{\text{enc}_\phi^{(i)}(x) + \epsilon}{\tau} \right)$$

 where $\epsilon_1 \ldots \epsilon_K \overset{iid}{\sim} \text{Gumbel}(0,1)$. Now z_i differentiable
Gumbel-Softmax (Jang et al., 2016)

Let $d = 1$ for simplicity, $q_\phi(\cdot|x) = \text{softmax}(\text{enc}_\phi(x))$

$$\frac{\partial}{\partial \phi} \left(E_{z \sim q_\phi(\cdot|x)} \left[\log \kappa_\theta(x|z) \right] \right) \approx E_{\epsilon \sim \text{Gumbel}^K(0, 1)} \left(\frac{\partial}{\partial \phi} \left(\log \kappa_\theta(x \left| \frac{\text{softmax}(\text{enc}_\phi(x) + \epsilon)}{\tau} \right) \right) \right)$$

Note κ_θ must handle vector representation of z

In practice use fixed τ (e.g., 0.9)
Striaght-Through Gumbel-Softmax

- For a fixed temperature the actual input to κ_θ is never sparse
- Idea: Enforce sparsity by sampling and use straight-through
 - More aligned with test time (when we actually sample), some applications need sparse input (reinforcement learning)
- Forward pass

\[
\epsilon \sim \text{Gumbel}^K(0, 1)
\]
\[
\delta_\tau = \text{softmax}\left(\frac{\text{enc}_\phi(x) + \epsilon}{\tau}\right)
\]
\[
z \sim \text{Cat}(\delta_\tau)
\]
\[
\tilde{z} = \delta_\tau + (\text{one-hot}(z) - \delta_\tau).\text{detach}()
\]
\[
J_{\text{recon}} = \log \kappa_\theta(x | \tilde{z})
\]

- Can be seen as approximating the gradient of a “snap” function with a linearization
Example: Bernoulli Mixture-Prior Model (Dong et al., 2019)

- $x \in \mathbb{R}^V$ raw document vector (V vocab size): binary if bag-of-words, real-valued if TFIDF
- Latent: $z \in \{0, 1\}^m$ “hash code” of x ($m \ll V$), $c \in \{1 \ldots C\}$ mixture component
- LVGM

$$p_\theta(x, c, z) = \pi^C_\theta(c) \times \pi^{Z|C}_\theta(z|c) \times \kappa_\theta(x|z)$$

- Generative story
 - Draw a component from $\pi^C_\theta(\cdot) = \text{softmax}_c(v)$ ($v \in \mathbb{R}^C$ learnable)
 - Given $c \in \{1 \ldots C\}$, draw a hash code from $\pi^{Z|C}_\theta(\cdot|c) = \sigma(u_c)$ where $u_c \in \mathbb{R}^d$ (learnable) and σ is element-wise sigmoid
 - Given $z \in \{0, 1\}^m$, “draw” a document from $\kappa_\theta(\cdot|z)$ where $\kappa_\theta(x|z) = \prod_{i:x_i > 0} \text{softmax}_i(Ez)$ ($E \in \mathbb{R}^{V \times m}$ learnable)
 - Will never really generate, so it’s fine κ_θ is weird
Approximate posterior: For any \(x \in \mathbb{R}^V, c \in \{1 \ldots C\}, \ z \in \{0, 1\}^m \)

\[
q_\phi(c, z|x) = q_\phi^C|X(c|x) \times q_\phi^Z|X(z|x)
\]

Similar parametrization: \(q_\phi^C|X(\cdot|x) = \text{softmax}(\text{enc}_\phi(x)) \) and \(q_\phi^Z|X(\cdot|x) = \sigma(\text{enc}'_\phi(x)) \)

Thanks to independence assumptions, we can compute KL directly

\[
D_{\text{KL}}(q_\phi(\cdot|x)||\pi_\theta) = D_{\text{KL}}(q_\phi^C|X(\cdot|x)||\pi_\theta^C(\cdot)) + \sum_{c=1}^C q_\phi^C|X(c|x) D_{\text{KL}}(q_\phi^Z|X(\cdot|x)||\pi_\theta^Z|C(\cdot|c))
\]

\[
\sum_c q_\phi^C|X(c|x) \log \frac{q_\phi^C|X(c|x)}{\pi_\theta^C(c)} + \sum_{i=1}^m \sum_{z_i = 0, 1} q_\phi^Z|X(z_i|x) \log \frac{q_\phi^Z|X(z_i|x)}{\pi_\theta^Z|C(z_i|c)}
\]
Reconstruction term (given x)

$$\mathbf{E}_{(c,z) \sim q_\phi(\cdot | x)} [\log \kappa_\theta(x | z)] = \mathbf{E}_{z \sim q_\phi^Z | X(\cdot | x)} [\log \kappa_\theta(x | z)]$$

Forward pass with straight-through and “data-dependent noise” given by $\sigma_\phi : \{0, 1\}^V \rightarrow \mathbb{R}$ (control variance of z adaptively for input)

$$\delta = \sigma(\text{enc}'_\phi(x))$$

$$z \sim \delta \quad \text{(i.e., } z_i \sim \text{Bernoulli}(\sigma([\text{enc}'_\phi(x)]_i)))$$

$$\tilde{z} = \delta + (z - \delta).\text{detach()}$$

$$\epsilon \sim \mathcal{N}(0_m, I_{m \times m})$$

$$\bar{z} = \tilde{z} + \sigma_\phi(x) \odot \epsilon \quad \text{(i.e., } \bar{z} \sim \mathcal{N}(\tilde{z}, \text{diag}(\sigma^2_\phi(x))))$$

$$J_{\text{recon}} = \log \kappa_\theta(x | \bar{z})$$

Once the model is learned, use $q_\phi^{Z|X}$ to hash documents
Posterior Collapse in VAEs

What’s one undesirable strategy to maximize

\[
\text{ELBO}(\theta, \phi) = \mathbb{E}_{x \sim \text{pop}, \, z \sim q(\cdot|x)} \left[\log \kappa_{\theta}(x|z) \right] - \mathbb{E}_{x \sim \text{pop}} \left[D_{KL}(q(\cdot|x)||\pi_{\theta}) \right]
\]
Posterior Collapse in VAEs

- What’s one undesirable strategy to maximize

\[
\text{ELBO}(\theta, \phi) = \mathbb{E}_{x \sim \text{pop}, z \sim q_\phi(\cdot | x)} [\log \kappa_\theta(x | z)] - \mathbb{E}_{x \sim \text{pop}} [D_{KL}(q_\phi(\cdot | x) || \pi_\theta)]
\]

- Annihilate the KL term by setting \(q_\phi(z | x) = \pi_\theta(z)\)!
- Decoder \(\kappa_\theta\) will then learn to ignore \(z\)
 - Degenerates to unconditional generative model
 - Known as **posterior collapse**
- Many strategies to alleviate
 - Annealing: Gradually increase KL weight \(\beta\) during training
 - Free bits (Kingma et al., 2016): Don’t penalize KL if it’s less than \(\lambda\) bits. Per-dimension version:

\[
\sum_{i=1}^{d} \max \left\{ \lambda, D_{KL}(q_{Z_i}^\phi | X || \pi_{Z_i}^\theta) \right\}
\]

- Current best practice (Li et al., 2019): Do both with encoder pretraining (pretrain without KL term, reset decoder, train with annealing on the free-bits KL term)
Quantities to Monitor During VAE Training

- Marginalized log likelihood (not equal to ELBO)
- ELBO, consisting of two terms
 - Reconstruction term: Are we doing a good job of reconstructing the input? Always better in pure autoencoding
 - KL term: If this is zero, we have posterior collapse
- Mutual information between x and z
- Number of active units (Burda et al., 2016): z_i is ϵ-active if
 \[
 \text{Cov}_{x \sim \text{pop}} (x, z_i) > \epsilon \\
 z_i \sim q_{\phi} (\cdot | x)
 \]