CMSC424: Database Design Normalization

February 26, 2020

Instructor: Amol Deshpande
amol@cs.umd.edu
Desiderata

- No sets
- Correct and faithful to the original design
 - Avoid lossy decompositions
- As little redundancy as possible
 - To avoid potential anomalies
- No “inability to represent information”
 - Nulls shouldn’t be required to store information
- Dependency preservation
 - Should be possible to check for constraints

Not always possible. We sometimes relax these for:

simpler schemas, and fewer joins during queries.
FDs: Example 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>StarName</th>
<th>Birthdate</th>
<th>producerC#</th>
<th>Producer address</th>
<th>Prdocuer name</th>
<th>netWorth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane Crazy</td>
<td>1927</td>
<td>6</td>
<td>NULL</td>
<td>NULL</td>
<td>WD100</td>
<td>Mickey Rd</td>
<td>Walt Disney</td>
<td>100000</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>H. Ford</td>
<td>7/13/42</td>
<td>GL102</td>
<td>Tatooine</td>
<td>George Lucas</td>
<td>10^9</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>M. Hamill</td>
<td>9/25/51</td>
<td>GL102</td>
<td>Tatooine</td>
<td>George Lucas</td>
<td>10^9</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>C. Fisher</td>
<td>10/21/56</td>
<td>GL102</td>
<td>Tatooine</td>
<td>George Lucas</td>
<td>10^9</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>F. Wray</td>
<td>9/15/07</td>
<td>MC100</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>N. Watts</td>
<td>9/28/68</td>
<td>PJ100</td>
<td>Middle Earth</td>
<td>Peter Jackson</td>
<td>10^8</td>
</tr>
<tr>
<td>State Name</td>
<td>State Code</td>
<td>State Population</td>
<td>County Name</td>
<td>County Population</td>
<td>Senator Name</td>
<td>Senator Elected</td>
<td>Senator Born</td>
<td>Senator Affiliation</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Autauga</td>
<td>54571</td>
<td>Jeff Sessions</td>
<td>1997</td>
<td>1946</td>
<td>‘R’</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Baldwin</td>
<td>182265</td>
<td>Jeff Sessions</td>
<td>1997</td>
<td>1946</td>
<td>‘R’</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Barbour</td>
<td>27457</td>
<td>Jeff Sessions</td>
<td>1997</td>
<td>1946</td>
<td>‘R’</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Autauga</td>
<td>54571</td>
<td>Richard Shelby</td>
<td>1987</td>
<td>1934</td>
<td>‘R’</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Baldwin</td>
<td>182265</td>
<td>Richard Shelby</td>
<td>1987</td>
<td>1934</td>
<td>‘R’</td>
</tr>
<tr>
<td>Alabama</td>
<td>AL</td>
<td>4779736</td>
<td>Barbour</td>
<td>27457</td>
<td>Richard Shelby</td>
<td>1987</td>
<td>1934</td>
<td>‘R’</td>
</tr>
</tbody>
</table>
FDs: Example 3

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies

- `course_id → title, dept_name, credits`
- `building, room_number → capacity`
- `course_id, section_id, semester, year → building, room_number, time_slot_id`
Functional Dependencies

- Let R be a relation schema and
 \[\alpha \subseteq R \text{ and } \beta \subseteq R \]
- The functional dependency
 \[\alpha \rightarrow \beta \]
 holds on R iff for any legal relations $r(R)$, whenever two tuples t_1 and t_2 of r have same values for α, they have same values for β.
 \[t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta] \]
- Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.
Functional Dependencies

Difference between holding on an *instance* and holding on *all legal relation*

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Title → Year holds on this instance

Is this a true functional dependency? No.

Two movies in different years can have the same name.

Can’t draw conclusions based on a *single instance*

Need to use domain knowledge to decide which FDs hold
FDs and Redundancy

- Consider a table: R(A, B, C):
 - With FDs: B → C, and A → BC
 - So “A” is a Key, but “B” is not
- So: there is a FD whose left hand side is not a key
 - Leads to redundancy

Since B is not unique, it may be duplicated
Every time B is duplicated, so is C

Not a problem with A → BC
A can never be duplicated

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a4</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a5</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a6</td>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>a7</td>
<td>b4</td>
<td>c1</td>
</tr>
</tbody>
</table>

Not a duplication → Two different tuples just happen to have the same value for C
FDs and Redundancy

Better to split it up

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
</tr>
<tr>
<td>a4</td>
<td>b2</td>
</tr>
<tr>
<td>a5</td>
<td>b2</td>
</tr>
<tr>
<td>a6</td>
<td>b3</td>
</tr>
<tr>
<td>a7</td>
<td>b4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>b4</td>
<td>c1</td>
</tr>
</tbody>
</table>

Not a duplication → Two different tuples just happen to have the same value for C
A relation schema \(R \) is “in BCNF” if:
- Every functional dependency \(A \rightarrow B \) that holds on it is **EITHER**:
 1. Trivial **OR**
 2. \(A \) is a superkey of \(R \)

Why is BCNF good?
- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation \(r(A, B, C, D) \) with functional dependency \(A \rightarrow B \) and two tuples: \((a1, b1, c1, d1)\), and \((a1, b1, c2, d2)\)
 - \(b1 \) is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - \(A \rightarrow B \) is neither trivial nor is \(A \) a superkey for the relation
Functional Dependencies

- Functional dependencies and keys
 - A key constraint is a specific form of a FD.
 - E.g. if A is a superkey for R, then: $A \rightarrow R$
 - Similarly for candidate keys and primary keys.

- Deriving FDs
 - A set of FDs may imply other FDs
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
 - We will see a formal method for inferring this later
1. A relation instance \(r \) satisfies a set of functional dependencies, \(F \), if the FDs hold on the relation

2. \(F \) holds on a relation schema \(R \) if no legal (allowable) relation instance of \(R \) violates it

3. A functional dependency, \(A \rightarrow B \), is called trivial if:
 - \(B \) is a subset of \(A \)
 - e.g. Movieyear, length \(\rightarrow \) length

4. Given a set of functional dependencies, \(F \), its closure, \(F^+ \), is all the FDs that are implied by FDs in \(F \).
Approach

1. We will encode and list all our knowledge about the schema
 ◦ Functional dependencies (FDs)
 ◦ Also:
 • Multi-valued dependencies (briefly discuss later)
 • Join dependencies etc...

2. We will define a set of rules that the schema must follow to be considered good
 ◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 ◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
A relation schema R is “in BCNF” if:

- Every functional dependency $A \rightarrow B$ that holds on it is either:
 1. Trivial OR
 2. A is a superkey of R

Why is BCNF good?

- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation $r(A, B, C, D)$ with functional dependency $A \rightarrow B$ and two tuples: $(a1, b1, c1, d1)$, and $(a1, b1, c2, d2)$
 - $b1$ is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - $A \rightarrow B$ is neither trivial nor is A a superkey for the relation
Why does redundancy arise?

1. Given a FD, $A \rightarrow B$, if A is repeated ($B - A$) has to be repeated
2. If rule 1 is satisfied, ($B - A$) is empty, so not a problem.
3. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t happen either

Hence no redundancy because of FDs

- Redundancy may exist because of other types of dependencies
 - Higher normal forms used for that (specifically, 4NF)
 - Data may naturally have duplicated/redundant data
 - We can’t control that unless a FD or some other dependency is defined
Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc…

2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
 - Through lossless decomposition (splitting)
 - Or direct construction using the dependencies information
What if the schema is not in BCNF?

- Decompose (split) the schema into two pieces.

From the previous example: split the schema into:

- \(r_1(A, B), \ r_2(A, C, D) \)
 - The first schema is in BCNF, the second one may not be (and may require further decomposition)
 - No repetition now: \(r_1 \) contains \((a_1, b_1)\), but \(b_1 \) will not be repeated

Careful: you want the decomposition to be lossless

- \(No \ information \ should \ be \ lost \)
 - The above decomposition is lossless
 - We will define this more formally later
Mechanisms and definitions to work with FDs

- Closures, candidate keys, canonical covers etc...
- Armstrong axioms

Decompositions

- Loss-less decompositions, Dependency-preserving decompositions

BCNF

- How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
1. Closure

- Given a set of functional dependencies, F, its closure, F^+, is all FDs that are implied by FDs in F.
 - *e.g.* If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$

- We can find F^+ by applying Armstrong’s Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ \hspace{1cm} (reflexivity)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ \hspace{1cm} (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ \hspace{1cm} (transitivity)

- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold)
Additional rules

- If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)
- If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

- The above rules can be inferred from Armstrong’s axioms.
Example

 $F = \{ \begin{align*}
 &A \to B \\
 &A \to C \\
 &CG \to H \\
 &CG \to I \\
 &B \to H \end{align*} \}$

- Some members of F^+
 - $A \to H$
 - by transitivity from $A \to B$ and $B \to H$
 - $AG \to I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$
 and then transitivity with $CG \to I$
 - $CG \to HI$
 - by augmenting $CG \to I$ to infer $CG \to CGI$, and augmenting of $CG \to H$ to infer $CGI \to HI$, and then transitivity
2. Closure of an attribute set

- Given a set of attributes A and a set of FDs F, \textit{closure of A under F} is the set of all attributes implied by A

- In other words, the largest B such that: $A \rightarrow B$

- Redefining \textit{super keys}:
 - The closure of a super key is the entire relation schema

- Redefining \textit{candidate keys}:
 1. It is a super key
 2. No subset of it is a super key
Computing the closure for A

- Simple algorithm

1. Start with $B = A$.
2. Go over all functional dependencies, $\beta \rightarrow \gamma$, in F^+
3. If $\beta \subseteq B$, then
 - Add γ to B
4. Repeat till B changes
Example

- \(R = (A, B, C, G, H, I) \)
- \(F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \} \)

- \((AG)^+?\)
 - 1. result = AG
 - 2. result = ABCG \((A \rightarrow C \text{ and } A \rightarrow B)\)
 - 3. result = ABCGH \((CG \rightarrow H \text{ and } CG \subseteq AGBC)\)
 - 4. result = ABCGHI \((CG \rightarrow I \text{ and } CG \subseteq AGBCH)\)

- Is \((AG)\) a candidate key?
 1. It is a super key.
 2. \((A^+) = ABCH, (G^+) = G.\)

YES.
Uses of attribute set closures

- Determining superkeys and candidate keys
- Determining if $A \rightarrow B$ is a valid FD
 - Check if $A+$ contains B
- Can be used to compute $F+$
3. Extraneous Attributes

- Consider \(F \), and a functional dependency, \(A \rightarrow B \).

- “Extraneous”: Are there any attributes in \(A \) or \(B \) that can be safely removed?

 Without changing the constraints implied by \(F \)

- Example: Given \(F = \{ A \rightarrow C, AB \rightarrow CD \} \)

 - \(C \) is extraneous in \(AB \rightarrow CD \) since \(AB \rightarrow C \) can be inferred even after deleting \(C \)

 - i.e., given: \(A \rightarrow C \), and \(AB \rightarrow D \), we can use Armstrong Axioms to infer \(AB \rightarrow CD \)
4. Canonical Cover

- A *canonical cover* for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

- In some (vague) sense, it is a *minimal* version of F

- Read up algorithms to compute F_c
Mechanisms and definitions to work with FDs
 ◦ Closures, candidate keys, canonical covers etc...
 ◦ Armstrong axioms

Decompositions
 ◦ Loss-less decompositions, Dependency-preserving decompositions

BCNF
 ◦ How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem
Loss-less Decompositions

- Definition: A decomposition of R into $(R1, R2)$ is called *lossless* if, for all legal instance of $r(R)$:

 $$ r = \Pi_{R1}(r) \Pi_{R2}(r) $$

- In other words, projecting on $R1$ and $R2$, and joining back, results in the relation you started with.

- Rule: A decomposition of R into $(R1, R2)$ is *lossless*, iff:

 $$ R1 \cap R2 \rightarrow R1 \quad \text{or} \quad R1 \cap R2 \rightarrow R2 $$

 in $F+$.

Is it easy to check if the dependencies in F hold?

Okay as long as the dependencies can be checked in the same table.

Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$

 Lossless? Yes.

 But, makes it hard to check for $B \rightarrow C$

 The data is in multiple tables.

2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$,

 is both lossless and dependency-preserving

 Really? What about $A \rightarrow C$?

 If we can check $A \rightarrow B$, and $B \rightarrow C$, $A \rightarrow C$ is implied.
Definition:
- Consider decomposition of R into R_1, $..., R_n$.
- Let F_i be the set of dependencies F^+ that include only attributes in R_i.

The decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms

- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions

- BCNF
 - How to achieve a BCNF schema

- BCNF may not preserve dependencies

- 3NF: Solves the above problem

- BCNF allows for redundancy

- 4NF: Solves the above problem
BCNF

- Given a relation schema R, and a set of functional dependencies F, if every FD, $A \rightarrow B$, is either:
 1. Trivial
 2. A is a superkey of R

Then, R is in **BCNF (Boyce-Codd Normal Form)**

- What if the schema is not in BCNF?
 - Decompose (split) the schema into two pieces.
 - Careful: you want the decomposition to be lossless
Achieving BCNF Schemas

For all dependencies $A \rightarrow B$ in $F+$, check if A is a superkey
 By using attribute closure

If not, then
 Choose a dependency in $F+$ that breaks the BCNF rules, say $A \rightarrow B$
 Create $R1 = A \ B$
 Create $R2 = A \ (R - B - A)$
 Note that: $R1 \cap R2 = A$ and $A \rightarrow AB (= R1)$, so this is lossless decomposition

Repeat for $R1$, and $R2$
 By defining $F1+$ to be all dependencies in F that contain only attributes in $R1$
 Similarly $F2+$
Example 1

\[R = (A, B, C) \]
\[F = \{ A \rightarrow B, B \rightarrow C \} \]
Candidate keys = \{A\}
BCNF = No. B \rightarrow C violates.

B \rightarrow C

R1 = (B, C)
\[F1 = \{ B \rightarrow C \} \]
Candidate keys = \{B\}
BCNF = true

R2 = (A, B)
\[F2 = \{ A \rightarrow B \} \]
Candidate keys = \{A\}
BCNF = true
Example 2-1

\[R = (A, B, C, D, E) \]
\[F = \{A \rightarrow B, BC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\} etc…

Dependency preservation ???

We can check:
- \(A \rightarrow B\) (R1), \(AC \rightarrow D\) (R3),
 but we lost \(BC \rightarrow D\)
So this is not a dependency-preserving decomposition
Example 2-2

R = (A, B, C, D, E)
F = \{A \rightarrow B, BC \rightarrow D\}
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\} etc…

BC \rightarrow D

R1 = (B, C, D)
F1 = \{BC \rightarrow D\}
Candidate keys = \{BC\}
BCNF = true

R2 = (B, C, A, E)
F2 = \{A \rightarrow B\}
Candidate keys = \{ACE\}
BCNF = false (A \rightarrow B)

A \rightarrow B

R3 = (A, B)
F3 = \{A \rightarrow B\}
Candidate keys = \{A\}
BCNF = true

R4 = (A, C, E)
F4 = \{\} [only trivial]
Candidate keys = \{ACE\}
BCNF = true

Dependency preservation ???
We can check:
BC \rightarrow D (R1), A \rightarrow B (R3),
Dependency-preserving decomposition
Example 3

\[R = (A, B, C, D, E, H) \]
\[F = \{ A \rightarrow BC, E \rightarrow HA \} \]
Candidate keys = \{DE\}

BCNF = Violated by \{A \rightarrow BC\} etc…

- **A \rightarrow BC**
 - \(R_1 = (A, B, C) \)
 - \(F_1 = \{ A \rightarrow BC \} \)
 - Candidate keys = \{A\}
 - BCNF = true

- **E \rightarrow HA**
 - \(R_3 = (E, H, A) \)
 - \(F_3 = \{ E \rightarrow HA \} \)
 - Candidate keys = \{E\}
 - BCNF = true

- **R_2 = (A, D, E, H)\]
 - \(F_2 = \{ E \rightarrow HA \} \)
 - Candidate keys = \{DE\}
 - BCNF = false (E \rightarrow HA)

- **R_4 = (ED)\]
 - \(F_4 = \{ \} \) [[only trivial]]\]
 - Candidate keys = \{DE\}
 - BCNF = true

Dependency preservation ???
We can check:

- A \rightarrow BC (R1), E \rightarrow HA (R3),
- Dependency-preserving decomposition
Mechanisms and definitions to work with FDs
- Closures, candidate keys, canonical covers etc...
- Armstrong axioms

Decompositions
- Loss-less decompositions, Dependency-preserving decompositions

BCNF
- How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem
BCNF may not preserve dependencies

- $R = \{J, K, L\}$
- $F = \{JK \rightarrow L, L \rightarrow K\}$

- Two candidate keys = JK and JL

- R is not in BCNF

- Any decomposition of R will fail to preserve $JK \rightarrow L$

- This implies that testing for $JK \rightarrow L$ requires a join
BCNF may not preserve dependencies

- Not always possible to find a dependency-preserving decomposition that is in BCNF.

- PTIME to determine if there exists a dependency-preserving decomposition in BCNF
 - in size of F

- NP-Hard to find one if it exists

- Better results exist if F satisfies certain properties
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem