Trees

Theorem. The following are equivalent:

1. \(G \) is connected and acyclic.
2. \(G \) is connected and \(|E| = |V| - 1 \).
3. \(G \) is acyclic and \(|E| = |V| - 1 \).
4. \(G \) is acyclic and \(|E| = |V| - 1 \).
5. \(G \) is acyclic and adding any new edge creates a cycle.

Proof.

1 to 2. Given a connected graph, if it is acyclic, then \(|E| = |V| - 1 \).

2 to 3. Graphs connected by definition.

3 to 4. Use strong induction on the number of vertices.

Base Case: \(N = 1 \), no paths.

Inductive Step: Assume the statement is true for all \(N \) less than \(|V| \).

Pick an arbitrary \(v \in V \), let \(u \in N_v \), \(u \) be a neighbor of \(v \).

Then, \(G' = (V, E \setminus \{(v, u)\}) \) is not disconnected.

Then, \(G' \) has 2 connected components, \(G_1, G_2 \) if \(G' = (V, E') \).

5 to 1. Use contradiction, assume \(uv \) in \(G \) is not connected.

Add edge \((v, u) \) must create a cycle, let the cycle be \((v, u, v) \).

Since \(G \) is acyclic, this contradicts the assumption that \(uv \) are not connected.

1 to 5. Let \((v, u) \) be a new edge.

Let \((v, u, v) \) be a path from \(v \) to \(v \).must exist because \(G \) is connected. Then \((v, u, v) \) is a cycle, a new cycle because \(G \) is acyclic.

II. Two descriptors are equivalent, 1-2, 2-1

1. \(G \) is a connected set of objects, \(1 \).
2. \(G \) is a connected set of objects, \(2 \).

III. \(|E| \geq |V| - 1 \) and \(|E| = |V| - 1 \) if \(|V| \geq 3 \).