We finally apply the Borsuk-Ulam Theorem to graph theory and proper colorings.

Definition.

The Kneser Graph $KG_{n,k}$ for $n \geq 2$, $k \geq 1$ is given by
- vertices are subsets of $\{1,2,\ldots,n\}$ of size k.
- given two vertices S and T (as sets), there is an edge ST iff S and T are disjoint.

Examples

$n=4$

- $k=1$
 - \begin{align*}
 &\{1\} \rightarrow \{2\} \rightarrow \{3\} \rightarrow \{4\} \rightarrow \{1\} \\
 &\{2\} \rightarrow \{3\} \rightarrow \{4\} \rightarrow \{1\} \rightarrow \{2\} \\
 &\{3\} \rightarrow \{4\} \rightarrow \{1\} \rightarrow \{2\} \rightarrow \{3\} \\
 &\{4\} \rightarrow \{1\} \rightarrow \{2\} \rightarrow \{3\} \rightarrow \{4\}
 \end{align*}

$n=5$

- $k=2$
 - \begin{align*}
 &\{1,2\} \rightarrow \{3,4\} \rightarrow \{5\} \rightarrow \{1,2\} \\
 &\{3,4\} \rightarrow \{5\} \rightarrow \{1,2\} \rightarrow \{3,4\} \\
 &\{5\} \rightarrow \{1,2\} \rightarrow \{3,4\} \rightarrow \{5\} \rightarrow \{1,2\} \\
 &\{1,2\} \rightarrow \{3,4\} \rightarrow \{5\} \rightarrow \{1,2\} \rightarrow \{3,4\}
 \end{align*}

- $k=3$
 - \begin{align*}
 &\{1,2,3\} \rightarrow \{4,5\} \rightarrow \{1,2,3\} \\
 &\{4,5\} \rightarrow \{1,2,3\} \rightarrow \{4,5\} \rightarrow \{1,2,3\} \\
 &\{1,2,3\} \rightarrow \{4,5\} \rightarrow \{1,2,3\} \rightarrow \{4,5\} \rightarrow \{1,2,3\}
 \end{align*}

- $k=4$

- $n=4$
 - $\chi(KG_{4,1}) = 4$
 - $\chi(KG_{4,2}) = 2$
 - $\chi(KG_{4,4}) = 1$ if $k \geq \frac{n}{2}$

- $n=5$
 - $\chi(KG_{5,1}) = 3$

Theorem (Lovász, 1978; Conjectured by Kneser in 1955 as an "exercise")

The chromatic number of the Kneser Graph $KG_{n,k}$ is $n - 2k + 2$.

References:

We first prove, algorithmically, that $n-2k+2$ suffice.

Then, to prove that $n-2k+2$ color are necessary, we will use the Borsuk-Ulam theorem.

Proof of upper bound

We give a procedure to color $KG_{n,k}$ with $n-2k+2$ colors:

- Color all the sets that include 1 with the first color.
- Color all the remaining sets that include $n-2k+1$ with the $n-2k+1$-st color.
- Color all the remaining vertices with the $n-2k+2$-nd color.

We need to show that this coloring is proper.

- For the first $n-2k+1$ colors, all the vertices have an element of their corresponding sets in common, so they can't share an edge.

- For the remaining vertices, they are subsets of $\{n-2k+2, \ldots, n\}$ of size k. This is equivalent to subsets of $\{1, \ldots, 2k-1\}$ of size k. However, we have seen that $\chi(KG_{n,k}) = 1$ if $k' \geq n' = 2k-1$. Since this is the case here, the same color can be used for all subsets of size k of $\{n-2k+2, \ldots, n\}$.

Lemma (Equivalent to Borsuk-Ulam Theorem)

If S^n is covered by $n+1$ subsets X_1, \ldots, X_{n+1} such that each of them is either open or closed, then at least one of them contains a pair of antipodal points.
We are now left with proving that \(n - 2k + 2 \) are necessary.

Proof of lower bound (Greene, 1982)

We proceed by contradiction, assuming that one can color \(K_{n,k} \) with \(d := n - 2k + 1 \) colors. Then, there exists a proper coloring

\[c : \binom{n}{k} \rightarrow \{1, \ldots, d\}. \]

Let \(X \) be a set of \(n \) points on \(S^d \) in general position, i.e., such that no \(d + 1 \) points lie on the same equator of \(S^d \).

These \(n \) points correspond to the elements of \(\{1, 2, \ldots, n\} \) used to define the vertices, so that a vertex corresponds to a set of \(k \) points of \(S^d \).

Construct \(d \) open sets \(U_1, \ldots, U_d \) as follows:

for a point \(x \in S^d \), consider all the points of \(X \) in the same hemisphere as \(x \) (in the closest half-sphere from \(x \)). For each subset \(V \) of \(k \) points in the same hemisphere, \(x \in U_{c(V)} \). Note that the sets need not to be disjoint.

Construct the closed set \(F_d \) = \(S^d \setminus \{U_1, \ldots, U_d\} \). \(U_1, \ldots, U_d \) cover \(S^d \) using only open and closed sets, so by the Borsuk-Ulam theorem, one of them contains antipodal points.

Call this set either \(U_i \) (i.e., \(i = 1, \ldots, d \)) or \(F_d \).

If \(U_i \) contains antipodal points, \(x \) and \(-x\); then, each hemisphere contains \(k \) points of \(x \) corresponding to vertices \(v \) and \(v' \), both colored with color \(i \).

Also, \(v \) and \(v' \) correspond to two disjoint sets of \(k \)
vertices, so they must be adjacent in $K_{G, n, k}$.

However, $c(v) = c(v')$, which means that the coloring is not proper.

So the set containing antipodal points must be F_{d+1}.

If $x \in F_{d+1}$, then the open hemisphere around x does not contain k elements of X. The same is true for $-x$.

Therefore, the equator (for the poles of S^d x and $-x$) contains at least $n - 2(k-1) = n - 2k + 2 = d + 1$. This contradicts the fact that X is in general position.

Hence, it is not possible to color $K_{G, n, k}$ with $d = n - 2k + 1$ colors.

\[\square\]

Remark

There also exists a purely combinatorial proof of the Lovász

Theorem, using Tucker's Lemma. (see for example [Lon13, §2.1])

References:

[Ma03, §3.3]

[Lon13, §2.1]