Problem 1: We choose a random line L and a point P on it.

Problem 2: Consider a point Q on line L. There exists a unique point P on line L such that $PQ = 1$. Let Q_1 be the point on line L such that $PQ_1 = 1$. Then Q_1 is the unique point on line L such that $PQ_1 = 1$.

Conclusion: The distances from point P to lines L_1 and L_2 are equal.

Proof: Let L_1 and L_2 be two parallel lines. Choose a point P on L_1 and a point Q on L_2. Draw a line L through P and parallel to L_1 and L_2. Then L intersects L_2 at a unique point Q_1. Therefore, $PQ = PQ_1$. Hence, L_1 and L_2 are parallel.

Theorem: If two lines L_1 and L_2 are parallel, then the distances from any point P on L_1 to L_2 and L_1 are equal.

Proof: Let L_1 and L_2 be two parallel lines. Choose a point P on L_1 and a point Q on L_2. Draw a line L through P and parallel to L_1 and L_2. Then L intersects L_2 at a unique point Q_1. Therefore, $PQ = PQ_1$. Hence, L_1 and L_2 are parallel.

Corollary: If two lines L_1 and L_2 are parallel, then the distances from any point P on L_1 to L_2 and L_1 are equal.