CS 533: Natural Language Processing

Coreference Resolution, Review

Karl Stratos

Rutgers University
Coreference Resolution (Coref)

- **Task.** Given a document (consisting of multiple sentences)
 1. Identify all mentions (i.e., spans) that refer to some entities
 2. Cluster the mentions into underlying entities

- **Example**
 - Input: “I voted for Nader because he was most aligned with my values,” she said.
 - Output: $C_1 = \{Nader, he\}$, $C_2 = \{I, my, she\}$

- **Related, but different from entity linking**
 - Typically no KB: Must infer new entities dynamically without grounding to a KB
 - Considers a wide range of mention types like pronouns and verbs as well as noun phrases
 - Can be long-range: A mention at the end of a document may refer to the first sentence

- **Not an end-task itself**
 - Pretrained LMs (seem to) solve language tasks that require coref without explicit coref training (e.g., Winograd)
 - Nevertheless important and difficult problem, with obvious applications in text analysis
Types of Coreference

- **Anaphora.** A later mention (anaphor) refers to an earlier mention (its antecedent). This is standard coref
 - *The music was so loud that it couldn’t be enjoyed.*

- **Cataphora.** An earlier mention (cataphor) refers to a later mention (its postcendent)
 - *If they are angry about the music, the neighbors will call the cops.*

- **Split antecedents.** An anaphor refers to split antecedents
 - *Carol told Bob to attend the party. They arrived together.*

- **Apositives.** Consecutive noun phrases renaming each other
 - *Little Davey, my youngest nephew, is feeling sick.*

(And more.) Complex linguistic phenomenon, heavily language-specific

- English: Pronoun *it* may refer to nothing (e.g., *it takes a lot of work to succeed*)
Labeled Data for Coref

- Annotation challenging even for humans, low inter-annotator agreement
- Current go-to dataset: OntoNotes (Pradhan et al., 2012)
 - Document-level coref annotation from the CoNLL-2012 shared task: Also includes Chinese and Arabic
 - 2802, 343, 348 train/dev/test documents (1 million words)
 - Varying document lengths: From 454 to 4009 words in train
 - Text from newswire, magazine, broadcast news/conversations, web, conversational speech, New Testament
 - No single-mention (singleton) entity labeled
- Referring mentions can be nested or overlapping
 - But when [you]₁ pray, [you]₁ should go into [[your]₁ room]₂₃ and close the door.
- Another challenge: Evaluation
 - Given a document with ground-truth entities and predicted entities, how do we judge goodness?
 - Series of proposed metrics: MUC, B³, CEAF, LEA
Coref Notation

- **Document**: Sequence of tokens $D = (x_1 \ldots x_T)$
- **Entity** (aka. equivalence class) is a set of (possibly overlapping) coreferent mention spans $(i, j), 1 \leq i \leq j \leq T$
- Annotation consists of **key entities** $S = \{S_1 \ldots S_n\}$
- System output consists of **response entities** $R = \{R_1 \ldots R_{n'}\}$
- Only **exact match** considered for mention prediction
 - $S = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9, A, B, C'\}\}$, 12 gold mentions (each index is a span) clustered into 3 key entities
 - $R = \{\{1, 2, 3\}, \{6, 7, 8, 9, A, B\}\}$, 2 response entities, failed to recover gold mentions 4, 5, C' (but might have predicted other mentions)
 - Predicted span considered correct (e.g., 9 in S_3 and R_2) iff it exactly matches a gold span, no partial credit for overlapping
- **Goal**: Define assymetric $\text{Eval}(S, R)$ representing **recall**
 - Flipping $\text{Eval}(R, S)$ represents **precision**
 - $F_1 = 2 \times \text{precision} \times \text{recall}/(\text{precision} + \text{recall})$
MUC (Vilain et al., 1995)

- **Intersect operation.** Entity S “intersected” with R is a partition of S induced by response coverage

 \[S = \{1, 2, 3, 4, 5\}\]
 \[R_1 = \{\{1, 2\}, \{4, 5, 6, 7\}\}\]
 \[R_2 = \{\{1, 2, 3, 4, 5, A\}\}\]

- $p_{R_1}(S) = \{\{1, 2\}, \{3\}, \{4, 5\}\}$
- $p_{R_2}(S) = \{\{1, 2, 3, 4, 5\}\}$

- **Idea:** $|p_R(S)|$ measures fragmentation of S by R (smaller is better, 1 if preserved)

- **MUC.** Can be derived by counting the minimal number of additional links R needs to generate entities in S (assumes non-singleton mentions)

 \[
 \text{Eval}(S, R) = \frac{\sum_{S \in S} \left(|S| - |p_R(S)| \right)}{\sum_{S \in S} \left(|S| - 1 \right)}
 \]

 - num common links bt S and R
 - num links in S

 - **Example:** For $S = \{\{1, 3\}\}$ and $R = \{\{1, 2, 3\}\}$, recall is $\frac{2-1}{2-1} = 1$, precision is $\frac{3-2}{3-1} = \frac{1}{2}$
MUC only considers the minimal number additional links and does not differentiate types of merges

\[S = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9, A, B, C\}\} \]
\[R_1 = \{\{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, A, B, C\}\} \]
\[R_2 = \{\{1, 2, 3, 4, 5, 8, 9, A, B, C\}, \{6, 7\}\} \]

Both responses have recall 1 and precision 0.9 under MUC

\[\text{Eval}(S, R) = \frac{\sum_{S \in S} \sum_{R \in R} |S \cap R|^2}{\sum_{S \in S} |S|} \]

Response 1 precision \(\frac{1}{12} \left(\left(5 \cdot \frac{5}{5} \right) + \left(2 \cdot \frac{2}{7} + 5 \cdot \frac{5}{7} \right) \right) \approx 0.76 \), Response 2 precision \(\frac{1}{12} \left(\left(5 \cdot \frac{5}{10} + 5 \cdot \frac{5}{10} \right) + \left(2 \cdot \frac{2}{2} \right) \right) \approx 0.58 \) (both have recall 1)
MUC and B3 “unintuitive” behavior in boundary cases

\[S = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9, A, B, C\}\} \]
\[R_3 = \{\{1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C\}\} \]
\[R_4 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{A\}, \{B\}, \{C\}\} \]

R_3 recall 1 (MUC & B3) but no $S \in S$ “recovered”, R_4 precision 1 (B3, undefined for MUC) but no $R \in R_4$ is “correct”

CEAF. Considers optimal 1-to-1 mapping $g^* : S \mapsto R$ achieving $C^* = \max_g \sum_{S \in S} \phi(S, g(S))$ (Kuhn–Munkres alg). $\phi(S, S')$ is any entity similarity measure. Defines

\[
\text{Eval}_\phi(S, R) = \frac{C^*}{\sum_{S \in S} \phi(S, S)} \quad \text{Eval}_\phi(R, S) = \frac{C^*}{\sum_{R \in R} \phi(R, R)}
\]

R_3 recall 0.2 and R_4 precision 0.1 under CEAF$^\phi_4$ where $\phi_4(S, S') = 2 |S \cap S'| / (|S| + |S'|)$
LEA (Moosavi and Strube, 2016)

- MUC least discriminative because it only considers additional links, can’t handle singletons
- B\(^3\) and CEAF found out to be uninterpretable (e.g., adding incorrect entities in \(\mathcal{R}\) can *increase* the score!), mainly because mention-level

- **LEA.** Link-based like MUC but accounts for all links including self-links (can handle singletons)

\[
\text{Eval}_\phi(S, \mathcal{R}) = \sum_{S \in S} \frac{\sum_{R \in \mathcal{R}} \left(\frac{|S \cap R| + 1}{2} \right)}{\sum_{S \in S} |S|} \times \frac{|S|}{\binom{n+k-1}{k}}
\]

\((\binom{n+k-1}{k}): \text{number of ways to choose } k \text{ items out of } n \text{ with replacement})

- So what’s the verdict on coref evaluation?
 - Common practice: Report all MUC, B\(^3\), CEAF\(_{\phi_4}\) (F\(_1\)) as well as their macro-average
 - But using a single reliable metric (LEA?) would be beneficial, meaningful significance test and precision/recall
End-to-End Neural Coref

- Coref traditionally approached as a pipeline
 - Run a mention detector, learn a separate model to link detected mentions
 - Subject to the usual limitations of pipeline (error propagation, complex heuristics)
- Modern approach: **End-to-end** (mention detector just a part of the whole model, learned jointly)
- Key ideas
 1. Consider all $O(T^2)$ mentions in $D = (x_1 \ldots x_T)$ as potential mentions: Number of (possibly overlapping) spans
 \[\binom{T}{2} = \frac{T(T-1)}{2} \] (why?)
 2. For each mention, dynamically define a distribution over all its antecedents ordered by start index (plus end index if tied)
 3. Train the model by marginalized log likelihood (target: only the antecedents in the gold entity)
 4. Efficient training by learnable pruning
Model

- Assumes contextual mention encoder $\text{enc}_\theta(D, i, j) \in \mathbb{R}^d$
 - Example: $\text{enc}_\theta(D, i, j) = h_i \oplus h_j \oplus \sum_{i \leq k \leq j} \beta_k h_k$ where $(h_1 \ldots h_T) = \text{BERT}(D)$ and $\beta_i \ldots \beta_j$ is an attention distribution over $h_i \ldots h_j$ ("head-finding")

- Mention scorer: $\text{score}_\theta^m(D, i, j) = \text{FF}_\theta^1(\text{enc}_\theta(D, i, j)) \in \mathbb{R}$

- Coreference scorer: Shares enc_θ with mention scorer

\[
\text{score}_\theta^c(D, (i, j), (i', j')) = \text{FF}_\theta^2 \left(\begin{bmatrix}
\text{enc}_\theta(D, i, j) \\
\text{enc}_\theta(D, i', j') \\
\text{enc}_\theta(D, i, j) \odot \text{enc}_\theta(D, i', j') \\
\text{extra}_\theta(D, (i, j), (i, j'))
\end{bmatrix} \right) \in \mathbb{R}
\]

extra_θ encodes extra features (distance between mentions, if same speaker), each feature value has a learnable embedding

- Final model: If $(i, j) \neq (0, 0)$ (dummy mention, next slide),

\[
\text{score}_\theta(D, (i, j), (i', j')) = \text{score}_\theta^m(D, i, j) + \text{score}_\theta^m(D, i', j') + \text{score}_\theta^c(D, (i, j), (i', j'))
\]

Otherwise 0. Interpretation: Won’t link if none has positive score
Training

- Let $m_0, m_1 \ldots m_{T(T-1)/2}$ denote all (possibly overlapping) spans in document, sorted left-to-right: $m_0 = (0, 0)$ is a dummy mention.

- Model defines probability of $m_{t'}$ referring to m_t where $t < t'$ by

$$p_{\theta}(m_t \leftarrow m_{t'} | D) = \frac{\exp(\text{score}_\theta(D, m_t, m_{t'}))}{\sum_{l < t'} \exp(\text{score}_\theta(D, m_l, m_{t'}))}$$

- Annotation doesn’t give explicit links (only key entities), but we can marginalize.

- For each mention $t' \in \{1 \ldots T(T - 1)/2\}$, let $\text{Ant}(t)$ denote all $t < t'$ such that m_t and $m_{t'}$ are in the same key entity: $\{0\}$ if $m_{t'}$ is not in any key entity or is the first mention of a gold entity.

- Training loss on document D

$$J_D(\theta) = - \sum_{t' = 1}^{T(T-1)/2} \log \left(\sum_{t \in \text{Ant}(t')} p_{\theta}(m_t \leftarrow m_{t'} | D) \right)$$
Learnable Pruning

▶ Don’t consider all \(\frac{T(T-1)}{2}\) mentions, prune by mention scores
 ▶ In practice, also prune by length (e.g., discard \(m\) if \(|m| > 10\))

▶ Two-stage beam search (Lee et al., 2017)
 ▶ Only use top \(M = \lambda T\) (e.g., \(\lambda = 0.4\)) mentions by \(\text{score}^m_\theta\)
 ▶ Because \(\text{enc}_\theta\) is shared between scorers, pruning improves as the model improves!
 ▶ Still too large: Input size \(O(M^2)\). Additionally restrict to \(\leq K\) nearest antecedents for each mention: Input size \(O(MK)\)

▶ Coarse-to-fine pruning (Lee et al., 2018) (three-stage beam search)

\[
\text{score}_\theta(D, m, m') = \text{score}^m_\theta(D, m) + \text{score}^m_\theta(D, m') + \\
\text{score}^c_\theta(D, m, m') + \text{score}^f_\theta(D, m, m')
\]

1. Choose \(M\) initial spans by \(\text{score}^m_\theta\) \(\text{enc}_\theta(D, m)\top A_\theta \text{enc}_\theta(D, m')\)
2. For each mention \(m\), select \(K\) mentions \(m'\) with largest \(\text{score}^m_\theta(D, m) + \text{score}^m_\theta(D, m') + \text{score}^f_\theta(D, m, m')\) (fast)
3. Compute full \(\text{score}_\theta\) over the thresholded mentions and train
Inference Example

Given a document $D = (x_1 \ldots x_T)$ (in practice processed in independent chunks for both training and evaluation)

1. Consider all spans up to length 30.

2. **Coarse pruning**: Rank these spans by score_m^0 and take the top $0.4T$.

3. For each surviving mention
 3.1 **Fine pruning**: Rank all surviving mentions to the left by $\text{score}_m^m, \text{score}_f^f$: Take top $K = 50$ as potential antecedents
 3.2 Link to argmax antecedent under full score_θ (dummy iff all negative)

4. Extract clusters from the resulting graph, ignoring dummy links
 - Graph: $m_0 \leftarrow m_1, m_2 \leftarrow m_3, m_2 \leftarrow m_4, m_3 \leftarrow m_5, m_6 \leftarrow m_7$
 - Clusters: $\{\{m_2, m_3, m_4, m_5\}, \{m_6, m_7\}\}$

Note this doesn’t handle singleton mentions: Okay for OntoNotes (no singleton)
Results on OntoNotes

- **Average F$_1$ across MUC, B3, CEAF$^\phi_4$**

![Graph showing comparison between different models]

- L-18 (Lee et al., 2018): End-to-end coref with coarse-to-fine pruning, adopted by subsequent works

- Improvement dominated by pretrained representations: SpanBERT (J-20) > BERT (J-19) > ELMo (L-18)

- “Higher-order” models: Encode dependency between mentions, not very helpful given powerful contextual transformation (not surprisingly)
Limitations and Alternatives

- While the model “learns” to beam search, errors in mention proposal are irreversible

- While mention embeddings $\text{enc}_\theta(D, m)$ can be deeply contextual, the coreference score $\text{score}_\theta(D, m, m')$ is a relatively shallow function of mention embeddings

- Alternative approach: Reduction to QA (Wu et al., 2020)

Can recover from mention proposal errors, full QA models capture more dependencies between mentions, data augmentation with QA datasets: 83.1 on OntoNotes
REVIEW
Modern NLP

Short-term goals: **Make machines understand human language**

Long-term goals: **Make machines actually intelligent**

Her (2013)
Challenges in Language Processing

- **Ambiguity**: “British Left Waffles on Falklands”
- **Nonsmoothness**: “Jack Black” vs “Black Jack” vs “Black Jack Black”
- **World knowledge**:
 - The city councilmen refused the demonstrators a permit because they feared violence.
 - The city councilmen refused the demonstrators a permit because they advocated violence.

Lots of progress by approaching NLP with machine learning, both supervised and unsupervised methods

- Recent game changer: Large-scale pretrained language models with deep self-attention architectures
- Can do seemingly amazing feats
Incredible Imitation of Understanding

Chatbot: Given conversation so far, output a response (Roller et al., 2020)

Why did the mushroom go to the party?
I'm not sure, but I'm glad it did. I love museums. What do you do for a living?
No, it was supposed to be a joke.
Oh, sorry. I didn't get it. What kind of joke was it? I like jokes.
The answer is, "because he's a fun guy." Do you get it?
No, I don't. Can you explain it to me like I'm a five year old?
Yes. Mushrooms are fungi, and "fungi" is pronounced like "fun guy"
Oh, okay. I get it now. Thank you for the explanation. I really appreciate it.
Are you sure you understand? Can you explain it to me?
Sure. It's a play on the word fungus, which is also pronounced fun guy.
Close enough.
I'm glad we could come to an agreement. Have a great day, fun guy!
Skipping Finetuning

- **GPT-3**: After LM training, do an arbitrary task on the fly by conditioning on a few demonstrations in natural language

```
1. Translate English to French:
2. sea otter => loutre de mer
3. peppermint => menthe poivrée
4. plush giraffe => girafe peluche
5. cheese => ........................................
```

- No finetuning, no gradient updates!!
- Competitive with state-of-the-art *supervised* NMT models when the target language is English
 - This is because much of training corpus is still in English. Lags behind when target is not English
 - Actually outperforms SOTA on WMT14 Fr→En (39.2 vs 35)
- Likewise, competitive performance on many NLU tasks without finetuning
Text2Image Generation

- **DALL·E** (Ramesh et al., 2021): GPT-3 applied to text-image pairs
- Single stream of 1280 tokens: 256 text, 1024 image
- No change in training
- Can synthesize images from arbitrary text prompts!
Limitations

- Seq2seq: Still not enough to solve NLP
 - When probed enough, LMs reveal that they don’t actually understand anything
 - No reliable way to control generation: Hallucination, repetition, and other garbage even with lots of heuristics
 - Promising direction: Knowledge-enhanced models that actively consult KBs and other sources of information

- Lots of big unsolved problems
 - Modeling causality not correlation: Does increase in crime cause increase in police force, or the other way around?
 - Removing prejudice: How can I enforce the model to make predictions without racial bias present in data?
 - Sustainable intelligence: Can the model chat for hours instead of 2 minutes? Can a machine be my long-time friend?
 - Large-scale input: Can the model process and understand an entire novel instead of a single 512-token block?
The Future

- Convergence toward a single general model
 - **Past**: Model for parsing, model for tagging, model for topic classification, model for sentiment analysis, ...
 - **Future**: One giant model transferable to any downstream task

- Not much change in general framework (Transformer, cross entropy), growing emphasis on engineering challenges
 - Impossible to fit the model on a single GPU, must parallelize the model (e.g., by layers) across multiple GPUs
 - This trend will continue

- Will a model be “conscious” at some point?
 - No one knows
 - Regardless, NLP has all kinds of fundamental applications in AI