Midterm Review

CS 539 / ECE 526
Distributed Algorithms
Overview

• Models of distributed computing
• Fundamental problems and algorithms
 – Correctness proofs and efficiency
• Negative results
Models of Distributed Computing

- **Message passing** vs. shared memory
- Generic graph vs. complete graph
- Lockstep, synchrony, asynchrony, partial sync
- No fault vs. crash fault vs. Byzantine fault
- Deterministic vs. randomized
- Cryptography (signatures) vs. not
Algorithms Covered

• Basic graph algorithms
 – Flooding broadcast, broadcast/convergecast using a spanning tree, building a spanning tree, BFS, DFS*

• Clock synchronization
 – 2 procs, \(n \) procs using reference, or using averaging*

• Synchronizers: local (2), global, hybrid*

• Logical clocks: Lamport, vector

• Consensus:
 – Flooding broadcast, Dolev-Strong, transformations
 – Reliable/consistent bcast, graded agreement, Ben-Or
 – Paxos, PBFT
Remark

• Broadcast is an overloaded term in this class
 – Spanning tree broadcast
 – Flooding broadcast (without faults)
 – Flooding broadcast (with crash)
 – Dolev-Strong broadcast
 – Reliable broadcast, Bracha broadcast
 – Consistent broadcast
 – Graded broadcast

• Do not say “broadcasts x” if you mean to say “sends x to all”
For Each Algorithm

• What (combination of) models does it assume?
• Why is it correct?
• What is the efficiency?

• *What purpose does each step serve?
• *Is it optimal in terms of …
Impossibilities Covered

• Clock synchronization skew bound
• Synchronizer fault tolerance
• Two general impossibility
• Consensus round and communication bounds
• Consensus fault bounds (many)
For Each Impossibility

• What (combination of) models does it require? I.e., When does it apply?

• When does it not apply?

• *Is it known to be tight? Due to which algo?

• *How is it proved? What is the intuition?
Fault Bounds Summary

• Async deterministic: $f = 0$
 – Broadcast, agreement, total-order bcast, replication

• Psync or randomized async
 – Broadcast: $f = 0$
 – Agreement, total-order broadcast, or replication:
 crash: $f < n/2$, Byzantine: $f < n/3$

• Sync
 – Crash: $f < n$ for all four problems
 – Byzantine no signature: $f < n/3$ for all four problems
 – Byzantine with signature
 • $f < n$ for broadcast and total-order broadcast
 • $f < n/2$ for agreement and replication
Fault Bounds Better Summary

- Byzantine agreement: \(f < \frac{n}{2} \)
- Byzantine replication: \(f < \frac{n}{2} \)
- Byzantine broadcast/agreement w/o sig: \(f < \frac{n}{3} \)
- Async deterministic agreement: \(f = 0 \)
- Psync broadcast: \(f = 0 \)
- Psync crash agreement: \(f < \frac{n}{2} \)
- Psync Byzantine agreement: \(f < \frac{n}{3} \)
Psync Agreement Fault Bound

• Crash: \(f < \frac{n}{2} \)

 – Proof: Two groups \(|P| \leq f \) and \(|Q| \leq f \)

 – Scenario I: \(P \) non-faulty & receive \(v \), \(Q \) crash
 • \(P \) eventually commit \(v \) due to validity

 – Scenario II: \(Q \) non-faulty & receive \(v' \), \(P \) crash
 • \(Q \) eventually commit \(v' \) due to validity

 – Scenario III: Both non-faulty, \(P \) receive \(v \), \(Q \) receive \(v' \)

 GST sufficiently large \(\rightarrow \) Both think the other crashed

 • \(P \) commit \(v \), \(Q \) commit \(v' \)
Psync Agreement Fault Bound

• Byzantine: $f < \frac{n}{3}$
 – Proof: Three groups $|P| \leq f$, $|Q| \leq f$, $|R| \leq f$
 – Scenario I: P/R non-faulty & receive v, Q crash
 • P eventually commit v due to validity
 – Scenario II: Q/R non-faulty & receive v', P crash
 • Q eventually commit v' due to validity
 – Scenario III: P non-faulty & receive v, Q non-faulty & receive v', R Byzantine behave towards P like in I and towards Q like in II. GST sufficiently large.
 • P cannot distinguish from I, commit v
 • Q cannot distinguish from II, commit v'