1. Let \(R \subset \mathbb{C}[x] \) be the subring of polynomials \(P \) such that the coefficient of \(x \) in \(P \) is zero.

 (a) (1 point) Give an embedding of \(\text{Spec } R \) into \(\mathbb{A}^2 \), and show that the image has a cusp.

 Solution: Note that \(R \) is generated as a \(\mathbb{C} \)-algebra by the polynomials \(x^2 \) and \(x^3 \), which satisfy \((x^3)^2 = (x^2)^3\). There is thus a surjection
 \[
 f : \mathbb{C}[u, v]/(u^3 - v^2) \to R
 \]
 sending \(u \) to \(x^2 \) and \(v \) to \(x^3 \). We claim that this map is an isomorphism. Indeed, every element of the left hand side can be uniquely represented as a polynomial in \(u \) and \(v \) without any terms of degree at least 2 in \(v \). Therefore, as a vector space, \(\mathbb{C}[u, v]/(u^3 - v^2) \) has a basis given by the \(u^i \) and the \(u^i v \). As \(f(u^i) = x^{2i} \) and \(f(u^i v) = x^{2i+3} \), this basis is sent by \(f \) to the basis of \(R \) consisting of all powers of \(x \) except for \(x \) itself, which shows that \(f \) is an isomorphism.

 Now the map
 \[
 \mathbb{C}[u, v] \to \mathbb{C}[u, v]/(u^3 - v^2) \cong R
 \]
 shows that \(\text{Spec } R \) is isomorphic to the plane curve \(u^3 = v^2 \), which has a cusp at the origin.

 (b) (1 point) Find a smooth curve \(\text{Spec } S \) with a map \(\text{Spec } S \to \text{Spec } R \) which is an isomorphism on topological spaces. Observe that this means that the composition \(\text{Spec } S \to \text{Spec } R \to \mathbb{A}^2 \) is a closed embedding of topological spaces but not a closed embedding of algebraic varieties.

 Solution: Note that we have a map \(R \to \mathbb{C}[x] \), which gives a map of varieties \(\mathbb{A}^1 \to \text{Spec } R \). To see that this map is an isomorphism on points, we look at the composition
 \[
 g : \mathbb{A}^1 \to \text{Spec } R \to \mathbb{A}^2
 \]
defined by
\[x \mapsto (x^2, x^3). \]
We know that \(\text{Spec } R \) embeds into \(\mathbb{A}^2 \) as the vanishing locus of \(u^3 - v^2 \), so it suffices to show that every \((u,v) \) with \(u^3 - v^2 = 0 \) can be uniquely expressed as \(g(x) \). If \(v = 0 \), then \(u = 0 \), and \(g \) sends only 0 to \((0,0)\). On the other hand, if \(v \neq 0 \), then \(x = \frac{u}{v} \) is the unique point sent to \((u,v)\), as desired.

As \(\mathbb{A}^1 \) and \(\text{Spec } R \) both have the cofinite topology (as they are both curves), it follows that the map \(\mathbb{A}^1 \to \text{Spec } R \) is also an isomorphism of topological spaces. Thus the map \(\mathbb{A}^1 \to \mathbb{A}^2 \) is a closed embedding of topological spaces, but is not a closed embedding of varieties because the corresponding map of algebras \(\mathbb{C}[u,v] \to R \to \mathbb{C}[x] \) is not surjective, as it factors through \(R \).

2. (2 points) Let \(R \) be a finite type \(\mathbb{C} \)-algebra that is integral (i.e., has no zero-divisors.) Let \(S \) be a multiplicative system in \(R \). Show that the localization \(R_S \) is a finite type \(\mathbb{C} \)-algebra if and only if it is isomorphic to the localization \(R_f \) at a single nonzero element \(f \). (Recall that \(R_f \) is the localization of \(R \) at the multiplicative system \(\{1, f, f^2, \cdots\} \).)

Solution: First we show that \(R_f \) is finitely generated. Let \(R \) be generated as an algebra by elements \(f_1, \cdots, f_n \). Then \(R_f \) will be generated by \(f_1, \cdots, f_n, \frac{1}{f} \), so is also finite type.

On the other hand, assume \(R_S \) is a finite type algebra. Then it is generated by elements \(\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n} \), with \(b_i \in S \). Let \(f \) be the product of the \(b_i \), which will still be an element of \(S \). Each \(\frac{a_i}{b_i} \) can be written as a fraction with denominator \(f \), so all polynomials in those elements can be written as fractions with denominators powers of \(f \). Thus, every element of \(R_S \) lies inside \(R_f \), as desired.

3. Our definition of \(\text{Spec } R \) as a topological space still makes sense for rings \(R \) which are not finite type \(\mathbb{C} \)-algebras. We will not worry too much about such algebras in this class, but let us briefly discuss the case of \(\mathbb{R} \)-algebras.

(a) (1 point) Classify the maximal ideals of \(\mathbb{R}[x] \), and describe the map
\[\text{Spec}(\mathbb{C}[x]) \to \text{Spec}(\mathbb{R}[x]). \]

Solution: As \(\mathbb{R}[x] \) is a principal ideal domain, the maximal ideals of \(\mathbb{R}[x] \) will be those generated by one irreducible polynomial. Thus, we get one maximal ideal \((x - a) \) for every real number \(a \) and one maximal ideal \((x^2 + ax + b) \) for every quadratic polynomial with no real roots (equivalently, for every pair of conjugate non-real complex numbers.)

The map \(f : \mathbb{C}[x] \to \mathbb{R}[x] \) sends an ideal \(I \) to its intersection with \(\mathbb{R}[x] \). It is clear that if \(r \) is real, \(f \) sends \((x - r)\) to \((x - r)\). On the other hand, if \(r \) is
non-real, then any polynomial with real coefficients and root \(r \) must also have \(\bar{r} \) as a root and hence be a multiple of \((x - r)(x - \bar{r}) \). Thus, \(f \) sends \((x - r) \) for non-real \(r \) to \((x - r)(x - \bar{r}) \).

(b) (1 point) Classify the maximal ideals of \(\mathbb{R}[x, y]/(x^2 + y^2 + 1) \), and describe the map

\[
\text{Spec}(\mathbb{C}[x, y]/(x^2 + y^2 + 1)) \to \text{Spec}(\mathbb{R}[x, y]/(x^2 + y^2 + 1)).
\]

Note that the vanishing locus of \(x^2 + y^2 + 1 = 0 \) in \(\mathbb{R}^2 \) is empty, and yet we can still study the algebraic geometry of this ring.

Solution: Let \(g \) denote the map

\[
\text{Spec}(\mathbb{C}[x, y]/(x^2 + y^2 + 1)) \to \text{Spec}(\mathbb{R}[x, y]/(x^2 + y^2 + 1)).
\]

We start by claiming that \(g \) is surjective. Indeed, let \(m \) be a maximal ideal of \(\text{Spec}(\mathbb{R}[x, y]/(x^2 + y^2 + 1)) \). Then \(m + \mathbb{R}i m \) is a non-unit ideal in \(\text{Spec}(\mathbb{C}[x, y]/(x^2 + y^2 + 1)) \), and is thus contained in some maximal ideal \(m' \). As \(m' \) contains (the image of) \(m \), we see that \(g(m') \) must be a maximal ideal containing \(m \), hence equaling \(m \).

We know that the maximal ideals of \(\text{Spec}(\mathbb{C}[x, y]/(x^2 + y^2 + 1)) \) are of the form \(((a - x), (y - b)) \) for \(a, b \) complex numbers with \(a^2 + b^2 + 1 = 0 \). Equivalently, we can describe this ideal as containing exactly the polynomials that vanish at \((a, b) \). As a polynomial with real coefficients vanishes at \((a, b) \) if and only if it vanishes at \((\bar{a}, \bar{b}) \), we see that \(g((x - a), (y - b)) = g((x - \bar{a}), (y - \bar{b})) \).

Conversely, we will show that if \(g((x - a), (y - b)) = g((x - c), (y - d)) \), then either \((c, d) = (a, b) \) or \((c, d) = (\bar{a}, \bar{b}) \). This will imply that maximal ideals of \(\text{Spec}(\mathbb{R}[x, y]/(x^2 + y^2 + 1)) \) are classified by pairs \((a, b) \) with \(a^2 + b^2 + 1 = 0 \), modulo conjugation. Assume that \((c, d) \) is neither \((a, b) \) nor \((\bar{a}, \bar{b}) \). Then there are real numbers \(r \) and \(s \) such that \(rc + sd \) is equal to neither \(ra + sb \) nor \(r\bar{a} + sb \). Then the polynomial \((rx + sy - ra - sb)(rx + sy - r\bar{a} - s\bar{b}) \) has real coefficients and vanishes at \((a, b) \) but not at \((c, d) \). This gives an element of \(g((x - a), (y - b)) \) that is not in \(g((x - c), (y - d)) \).

4. Let \(S \) be a subset of \(\mathbb{Z}^n \) containing 0 and closed under addition (in other words, a sub-semigroup of \(\mathbb{Z}^n \)). We can define a ring \(\mathbb{C}[S] \) whose elements are formal linear combinations \(\sum a_i t^{s_i} \) with the \(s_i \in S \), with multiplication determined by the rule \(t^{s_i} \cdot t^{s_j} = t^{s_i + s_j} \). An affine toric variety is the spectrum of a ring \(\mathbb{C}[S] \). Toric varieties give a large family of easy examples of varieties.

(a) (1 point) Show that every inclusion \(S \subseteq S' \) gives a map of toric varieties \(\text{Spec} \mathbb{C}[S'] \to \text{Spec} \mathbb{C}[S] \).
Solution: There is a map of algebras \(\mathbb{C}[S] \to \mathbb{C}[S'] \) sending \(t \) to \(t' \). Taking \(\text{Spec} \) gives us the desired map.

(b) (1 point) Show that any toric variety has an open subset which is isomorphic to a torus (i.e., the spectrum of an algebra \(\mathbb{C}[x_i, x_i^{-1}] \)). This is why these varieties are called toric.

Solution: Let \(S' \) be the group generated by \(S \). Then as \(S \) is a subgroup of \(\mathbb{Z}^n \), it must be isomorphic to \(\mathbb{Z}^m \) for some \(m \). It follows that \(\mathbb{C}[S'] \) is isomorphic to an algebra \(\mathbb{C}[x_1, \ldots, x_m, x_i^{-1}, \ldots, x_m^{-1}] \), and hence has spectrum a torus. It remains to show that the map \(\text{Spec} \mathbb{C}[S'] \to \text{Spec} \mathbb{C}[S] \) is an open embedding, or equivalently that the map of algebras \(\mathbb{C}[S] \to \mathbb{C}[S'] \) is a localization. (Technically one needs that it is a localization by one element, but this follows assuming \(S \) is finitely generated (a necessary assumption for the problem) by Problem 2.)

Note that the set of elements of the form \(t \) is a multiplicative system in \(\mathbb{C}[S] \). Inverting these elements gives \(\mathbb{C}[S'] \), as desired.

5. (2 points) Recall in class that we mentioned that \(X = \mathbb{A}^2 - \{(0,0)\} \) is not an affine variety. More precisely, we claim that there is no affine variety \(Y \) with a map \(\pi : Y \to \mathbb{A}^2 \) and two open subvarieties \(U \) and \(V \) satisfying the following properties:

- \(Y \) is the union of \(U \) and \(V \)
- \(\pi \) induces an isomorphism of varieties between \(U \) (respectively, \(V \)) and the complement of the \(x \)-axis (respectively, the \(y \)-axis) in \(\mathbb{A}^2 \)
- \(\pi \) induces an isomorphism of varieties between the intersection \(U \cap V \) and the locus where \(xy \) does not vanish in \(\mathbb{A}^2 \).

Prove this. (Hint: One way of doing this is to think about maps from such a variety \(Y \) to \(\mathbb{A}^1 \).)

Solution: Maps from a variety \(Y \) to \(\mathbb{A}^1 \) are in bijection with elements in \(\mathcal{O}(Y) \), so we will work in the language of regular functions. By our assumptions, \(\mathcal{O}(U) \cong \mathbb{C}[x, y, y^{-1}] \) and \(\mathcal{O}(V) \cong \mathbb{C}[x, y, x^{-1}] \). We also have \(\mathcal{O}(U \cap V) \cong \mathbb{C}[x, y, x^{-1}, y^{-1}] \).

Each regular function on \(Y \) corresponds to a pair of regular functions, one from each of \(\mathcal{O}(U) \) and \(\mathcal{O}(V) \), whose restrictions to \(\mathcal{O}(U \cap V) \) agree. From our computations above, we see that this implies that \(\mathcal{O}(Y) \cong \mathbb{C}[x, y] \). As \(Y \) is affine, this implies that \(Y \cong \mathbb{A}^2 \). But this is a contradiction, as then the origin would be in the image of \(\pi \).
6. (1 point) Look up the definition of a sheaf. Use google to find as many motivations as you can for why you would define such an object. Elaborate on the one you find most convincing.

Solution: Many possible answers.