Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a function.

Def. (Deterministic query complexity) $D(f)$ is the number of queries to x needed to compute $f(x)$.

Def. (Quantum query complexity) $Q(f)$ is the number of quantum queries to x needed to compute $f(x)$.

Def. (Sensitivity) $s(f) = \max \{ \{ i \mid \text{ bit flipped} \} : x, y : (x_i = 1) \land (y_i = 0) \}$

Corollary of sensitivity theorem

- $D(f) = O(s(f)^2)$
- $Q(f) = O(s(f)^4)$
- $D(f) = O(CYQ)^{1/3}$ — limit to how much better quantum algorithms can be.

Sensitivity Theorem: If $G = (V, E)$ is the hypercube $G = (\{0,1\}^n, E)$, an induced subgraph, $|V| \geq 2^n$, largest degree in G is at least $\Theta(1/\sqrt{n})$.

Theorem: $g: \{0,1\}^n \rightarrow \{0,1\}$ is a function.

- $g(x) = 0$ if x has an odd # of 1s.
- $g(x) = 1$ if x has an even # of 1s.

g is a generator on el.

Let $f: \{0,1\}^n \rightarrow \{0,1\}$.

If $\sum_{x \in \{0,1\}^n} g_x \cdot f(x) = 0$, $s(f) \geq \delta n$

Proof. Let $V' = \{ x \mid x \in \{0,1\}^n, \sum_{x \in \{0,1\}^n} g_x \cdot f(x) = 0 \}$.
\[1 \leq (\frac{1}{2}) \cdot g_u + \epsilon \quad s(k) \geq 5n \]

Proof Let \(V' = \{ v \mid v \in \{0,1\}^n, (\cdot)^e = g_v \} \)

Either \(|V'| < 2^{-n} \) or \(|V'| > 2^{-n} \)

(If \(|V'| = 2^{-n}, \sum_{v \in \{0,1\}^n} g_v = 0 \))

Assume \(|V'| > 2^{-n} \) (otherwise \(V \equiv V' \))

By (\(\ast \)), there exist \(v \in V' \) s.t.

Then if \(\sum_{v \in \{0,1\}^n} g_v \neq 0 \),

\[D_c(f) \leq n^2 \]